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Introduction 
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In [1]: 

linkcode 

# Import all the Python Libraries needed for the Exploratory Data Analysis 

import pandas as pd 

import numpy as np 

import json 

from collections import Counter 

 

import plotly.graph_objects as go 

import plotly.figure_factory as ff 

from plotly.subplots import make_subplots 

import plotly.express as px 

from plotly.offline import init_notebook_mode, iplot 

from plotly.colors import n_colors 

 

from IPython.core.display import display, HTML, Javascript  

import IPython.display 

from IPython.display import display, clear_output 

 

import ipywidgets as widgets 



   
 

from ipywidgets import interact, interact_manual 

 

import matplotlib as mpl 

import matplotlib.pyplot as plt 

 

import warnings 

warnings.filterwarnings('ignore') 

 

/opt/conda/lib/python3.7/site-packages/geopandas/_compat.py:115: UserWarning: The Shapely GEOS 

version (3.9.1-CAPI-1.14.2) is incompatible with the GEOS version PyGEOS was compiled with (3.10.3-

CAPI-1.16.1). Conversions between both will be slow. 

  shapely_geos_version, geos_capi_version_string 
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In [2]: 

# Load the responses of the survey 

df = pd.read_csv("../input/kaggle-survey-2022/kaggle_survey_2022_responses.csv") 

 

# Get the questions' titles 

questions_titles =  df[0:1] 

 

# Skip the first row as it keeps the questions' titles 

df = df[1:] 
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In [3]: 

# Helper Functions for creating the visualizations in Plotly.  

 

def create_scatter_plot( 

    x_axis_values, 

    y_axis_values,  

    hover_template, 

    marker_color,  

    marker_size,  

    title, 

    subtitle, 

    subtitle_explain): 

    """It creates a Scatter Plot.""" 

     

    # Define the trace 

    trace = go.Scatter( 

        x=x_axis_values,  

        y=y_axis_values, 

        mode='markers',  

        hovertemplate=hover_template, 

        marker=dict( 

            color=marker_color, 

            size=marker_size, 



   
 

            showscale=True, 

            colorbar=dict(title="Percent"), 

            opacity=0.7, 

            colorscale = 'RdBu_r' 

        ) 

    ) 

 

    # Define the layout 

    layout = go.Layout( 

        width=900,  

        height=950,  

        plot_bgcolor="#fff",  

        paper_bgcolor="#fff",  

        showlegend = False,  

        title = { 

            'text' : f"<span style='font-size:30px; font-family:Times New 

Roman'>{title}</span><br><br><sup>{subtitle}</sup><br><sup>{subtitle_explain}</sup>",  

            'x':0.5, 

            'xanchor': 'center' 

        },  

        font = {"color" : '#7b6b59'}, 

        margin = dict(t=170), 

    ) 

     

    fig = go.Figure(data = [trace], layout = layout) 



   
 

     

    fig.update_xaxes( 

        showline=False, 

        linewidth=1, 

        linecolor='#c9c4c3', 

        gridcolor='#c9c4c3', 

        tickfont=dict(size=14, family='Verdana', color='#7b6b59'),  

        title="", 

        title_font=dict(size=14, family='Verdana', color='#f57369'), 

        showgrid=False,  

        tickangle=325 

    ) 

    fig.update_yaxes( 

        showline=False, 

        linewidth=1, 

        linecolor='#000', 

        gridcolor='#fff', 

        tickfont=dict(size=14, family='Verdana', color='#a43725'),  

        title="", 

        title_font=dict(size=14, family='Verdana', color='#f57369'), 

        showgrid=False 

    ) 

 

    fig.show() 



   
 

 

 

def get_bar_plot_trace(x_values, y_values, display_text, top_n, rest_n, hovertext, orientation="h"): 

    """It creates the trace for a bar plot.""" 

     

    trace = go.Bar( 

        y = y_values, 

        x = x_values, 

        name = "", 

        orientation = orientation, 

        marker = dict(color = ["#E6b6a4"]*rest_n +  ["#a43725"]*top_n), 

        text = display_text, 

        texttemplate =  "<b style='color: #fff'>%{text}% </b>", 

        textposition = ["outside"]*rest_n + ["inside"]*top_n, 

        hovertext=hovertext 

    ) 

     

    return trace 

 

 

def create_single_bar_plot(x_values, y_values, display_text, top_n, rest_n, hovertext, title, subtitle="", 

orientation="h"): 

    """It creates single bar plots.""" 

 

    trace = get_bar_plot_trace(x_values, y_values, display_text, top_n, rest_n, hovertext, orientation) 



   
 

 

    large_title_format = f"<span style='font-size:30px; font-family:Times New Roman'>{title}</span>" 

     

    layout = dict( 

        title = large_title_format, 

        font = dict(color = '#7b6b59'), 

        margin = dict(t=120), 

        yaxis={'categoryorder':'array','categoryarray': x_values}, 

        xaxis=dict(side="top", zerolinecolor = "#4d4d4d", zerolinewidth = 0.5, gridcolor="#e7e7e7", 

tickformat=",.1%"), 

        width = 800, 

        height= 700, 

        plot_bgcolor = "white" 

    ) 

 

    fig = go.Figure(data = trace, layout = layout) 

    fig.show() 

     

     

def create_box_plot(df, x_column_name, y_column_name, title): 

    """It creates bar plots.""" 

 

    fig = px.box( 

        df,  

        x=x_column_name,  



   
 

        y=y_column_name, 

        title=f"<span style='font-size:30px; color:#7b6b59; font-family:Times New Roman'>{title}</span>") 

 

    layout = go.Layout( 

        xaxis= {"title": ""}, 

        yaxis= {"title": "Compensation in USD"}, 

        font = dict(color = 'black'), 

        paper_bgcolor='rgba(0,0,0,0)', 

        plot_bgcolor='rgba(0,0,0,0)', 

        height=800, 

        width=1050 

    ) 

 

    fig.update_layout(layout) 

    fig.update_yaxes(showline=True, linewidth=1, gridcolor='lightgrey') 

    fig.update_traces(marker_color='#b39a74') 

 

    fig.show()  

 

def create_heatmap(z, x, y, annotation_text, color_scale, title, subtitle="", xlabel="", ylabel=""): 

    """It creates a heatmap.""" 

 

    fig = ff.create_annotated_heatmap(z, x=x, y=y, annotation_text=annotation_text,  

colorscale=color_scale) 

 



   
 

    large_title_format = f"<span style='font-size:30px; font-family:Times New Roman'>{title}</span>" 

    small_title_format = f"<span style='font-size:14px; font-family:Helvetica'>{subtitle}</b></span>" 

 

 

    layout = dict( 

        title = large_title_format + "<br>" + small_title_format, 

        font = dict(color = '#7b6b59'), 

         xaxis= {"title": xlabel}, 

        yaxis= {"title": ylabel}, 

 

    ) 

 

    fig['layout'].update(layout) 

    fig["layout"]["xaxis"].update(side="bottom") 

    fig.show() 
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In [4]: 

# This section has all the python functions and global variables needed for the analysis 

 

# Categorizing the state of Machine Learning Adoption into more general categories 

map_ml_adoption = { 

    "No (we do not use ML methods)": "Not Started" ,  

    "We are exploring ML methods (and may one day put a model into production)": "Exploration Stage", 



   
 

    "We use ML methods for generating insights (but do not put working models into production)": 

"Generating Insights",  

    "We recently started using ML methods (i.e., models in production for less than 2 years)": "Models in 

Production", 

    "We have well established ML methods (i.e., models in production for more than 2 years)": "Models in 

Production", 

    "I do not know": "Not Known", 

    np.nan: "Not Known" 

} 

 

 

# Colors for different Machine Learning Adoption Stages 

ml_adoption_color_discrete_map={ 

    "Models in Production":"#a43725",  

    "Generating Insights": "#c07156",  

    "Exploration Stage":"#E6b6a4", 

    "Not Started": "#e0d5bd", 

    "Not Known": "#beb29e" 

} 

 

 

# Rephrasing the ML Adoption (state) by adding numbers for sorting them alphabetically 

map_ml_usage = { 

    "No (we do not use ML methods)": "0. Not Started<br><sup>(No ML)</sup>" ,  

    "We are exploring ML methods (and may one day put a model into production)": "1. 

Exploration<br><sup>Only Exploring ML</sup>", 



   
 

    "We use ML methods for generating insights (but do not put working models into production)": "2. 

Beginner Stage<br><sup>Use ML only for Insights</sup>",  

    "We recently started using ML methods (i.e., models in production for less than 2 years)": "3. 

Intermediate Stage<br><sup>Recently Started Using ML</sup>", 

    "We have well established ML methods (i.e., models in production for more than 2 years)": "4. Advance 

Stage<br><sup>Well Established ML</sup>", 

    "I do not know": "Not Known", 

    np.nan: "Not Known"    

} 

 

 

# Rephrasing the Company Size by adding numbers for sorting them alphabetically 

map_company_size = { 

    "0-49 employees": "1. 0-49 employees" ,  

    "50-249 employees": "2. 50-249 employees", 

    "250-999 employees": "3. 250-999 employees", 

    "1000-9,999 employees": "4. 1000-9,999 employees", 

    "10,000 or more employees": "5. 10,000 or more employees", 

    np.nan: np.nan    

} 

 

 

# Rephrasing the Coding experience by adding numbers for sorting them alphabetically 

map_programming_experience = { 

    "I have never written code": "1. 0 years", 

    "< 1 years": "2. < 1 years", 



   
 

    "1-3 years": "3. 1-3 years", 

    "3-5 years": "4. 3-5 years", 

    "5-10 years": "5. 5-10 years", 

    "10-20 years": "6. 10-20 years", 

    "20+ years": "7. 20+ years", 

    np.nan: np.nan 

} 

 

 

# Rephrasing the Machine Learning experience by adding numbers for sorting them alphabetically 

map_ml_experience = { 

    "I do not use machine learning methods": "1. 0 years", 

    "Under 1 year": "2. < 1 years", 

    "1-2 years": "3. 1-2 years", 

    "2-3 years": "4. 2-3 years", 

    "3-4 years": "5. 3-4 years", 

    "4-5 years": "6. 4-5 years", 

    "5-10 years": "7. 5-10 years", 

    "10-20 years": "8. 10-20 years", 

    "20+ years": "9. 20+ years", 

    np.nan: np.nan 

} 

 

 



   
 

# Rephrasing the Data Science Teams Size by adding numbers for sorting them alphabetically 

map_data_team_size = { 

    "0": "1. 0", 

    "1-2": "2. 1-2", 

    "3-4": "3. 3-4", 

    "5-9": "4. 5-9", 

    "10-14": "5. 10-14", 

    "15-19": "6. 15-19", 

    "20+": "7. 20+", 

    np.nan: np.nan 

} 

 

 

# Get a plotly Dataset with all the countries along with the continent in which they belong 

countries_df = px.data.gapminder().query("year == 2007") 

countries_df["country"] = countries_df["country"].str.strip() 

 

map_country_continent = { 

    "United States of America": "Americas",  

    "United Kingdom of Great Britain and Northern Ireland": "Europe", 

    "South Korea": "Asia",  

    "Russia": "Europe", 

    "Viet Nam": "Asia", 

    "Hong Kong (S.A.R.)": "Asia", 



   
 

    "Ukraine": "Europe", 

    "United Arab Emirates": "Asia", 

    "Iran, Islamic Republic of...": "Asia", 

     

} 

 

 

def fix_map_country_continent(map_countries: dict, country:str, continent:str): 

    """It maps a country to its continent""" 

    if country in map_countries: 

        return map_countries[country] 

     

    return continent 

 

 

def usage_of_a_product_or_service(question_title: str, row: pd.Series, columns_list: list) -> str: 

    """It takes as input a question title with multiple choices answers and checks 

    if the respondent has selected at least one of the answers or not.  

    For instance, if we want to check if a respondent uses cloud computing platforms, question 31, then we 

should  

    check if the participant has selected any cloud computing platform choice Q31_1, Q31_2, etc.  

    """ 

    for col in columns_list: 

        if col.startswith(question_title): 

 



   
 

            if not pd.isnull(row[col]) and row[col].strip().lower() != "none": 

                return "Yes" 

    # If all the columns (choices), Q31_1, Q31_2, etc have empty values then the user hasn't selected  

    # any platform so we return NO as the answer 

    return "No" 

 

 

def categorize_education(education:str) -> str: 

    """Assigns more general categories to education levels.""" 

    if education in [ 

        "No formal education past high school",  

        "Some college/university study without earning a bachelor’s degree" 

    ]: 

        return "Lower than Bachelor" 

     

    if education == "Bachelor’s degree": 

        return "Bachelor" 

     

    if education == "Master’s degree": 

        return "Master" 

     

    if education in ["Doctoral degree", "Professional doctorate"]: 

        return "Higher than Master" 

     



   
 

    return "Other" 

 

 

def extract_and_count_all_the_multiple_choice_answers(question, df): 

    """If we have a question with multiple choices it returns a data 

    frame with the number of occurrences of each choice in the responses.  

    """ 

     

    # e.g List of choices for Question, e.g. Q19 (computer vision methods) 

    choices_list = [choice for choice in df.columns if choice.startswith(question)] 

    dfs_list = [] 

    for col in choices_list: 

        dfs_list.append(df.groupby([col]).agg({"Q2" : "count"}).reset_index().rename(columns={col: 

question, "Q2": "counts"})) 

 

    agg_df = pd.concat(dfs_list) 

    agg_df["relative_percent"] = agg_df.apply(lambda x : (x["counts"] / df.shape[0]), axis = 1) 

    agg_df = agg_df.sort_values(by=["relative_percent"], ascending=True) 

     

    return agg_df 

 

 

def assign_label(service:str): 

    """It returns the company name to which the product belongs.  

    It takes care only of the 3 big techs: Google, Microsoft, Amazon. 



   
 

    """ 

     

    if "google" in service.lower(): 

        return "Google" 

     

    if "aws" in service.lower() or "amazon" in service.lower(): 

        return "Amazon" 

     

    if "azure" in service.lower() or "microsoft" in service.lower(): 

        return "Microsoft" 

     

    if "ibm" in service.lower(): 

        return "IBM" 

 

    return "Other" 

 

 

def extract_the_number_of_responses(question_title: str, row: pd.Series, columns_list: list) -> str: 

    """It takes as input an answer from a multiple-choice question and counts the number  

    of respondents that have chosen it. 

    """ 

    num_responses = 0  

    for col in columns_list: 

        if col.startswith(question_title): 



   
 

            if not pd.isnull(row[col]): 

                num_responses = num_responses + 1  

 

    return num_responses 

 

 

def wrap_df_text(df): 

    return display(HTML(df.style.background_gradient(axis=0,  cmap='YlOrBr', subset=["Average number 

of selected choices"]).to_html().replace("\\n","<br>"))) 
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In [5]: 

# respondents that currently are not students (answer **No** the **Q5** question) 

# currently are employed (They didn't answer the **Q23** question that "Currently not employed") 

# have answered in what industry they are currently employed (or their most recent employer if retired) - 

**Q24 question has an answer** 

 

scope_df = df[ 

    (df["Q5"] == "No") &  

    (df["Q24"].notnull()) & 

    (df["Q23"] != "Currently not employed") 

] 

 

 

# Assign more general categories to the state of Machine Learning Adoption in industry 



   
 

scope_df["ML_adoption_class"] = scope_df["Q27"].apply(lambda x : map_ml_adoption[x]) 

 

# Rephrasing the ML Adoption (state) by adding numbers for sorting them alphabetically 

scope_df["ML_adoption"] = scope_df["Q27"].apply(lambda x : map_ml_usage[x]) 

 

# Rephrasing the size of the company by adding numbers for sorting them alphabetically 

scope_df["Q25"] = scope_df["Q25"].apply(lambda x : map_company_size[x]) 

 

# Check if the respondent used Cloud Computing Platforms 

scope_df["Cloud_usage"] = scope_df.apply(lambda row: usage_of_a_product_or_service("Q31", row, 

list(scope_df.columns)), axis=1) 

scope_df["NLP_methods_usage"] = scope_df.apply(lambda row: usage_of_a_product_or_service("Q20", 

row, list(scope_df.columns)), axis=1) 

scope_df["CV_methods_usage"] = scope_df.apply(lambda row: usage_of_a_product_or_service("Q19", 

row, list(scope_df.columns)), axis=1) 

scope_df["GPU_usage"] = scope_df.apply(lambda row: usage_of_a_product_or_service("Q42", row, 

list(scope_df.columns)), axis=1) 

 

 

scope_df["Q11"] = scope_df["Q11"].apply(lambda x : map_programming_experience[x]) 

scope_df["Q16"] = scope_df["Q16"].apply(lambda x : map_ml_experience[x]) 

scope_df["Q26"] = scope_df["Q26"].apply(lambda x : map_data_team_size[x]) 

 

industry_totals = scope_df["Q24"].value_counts().to_dict() 

 

Adoption of Data Science and Machine Learning in Industry 



   
 

As a Data Scientist in the banking sector, I strongly believe that the adoption of Data Science and Machine 

Learning could transform older, traditional banks into more digitally savvy banks capable of competing 

with the rise of more digitally-driven ones of the modern age. AI adoption can benefit other industries as 

well. The findings from the latest McKinsey Global Survey about the state of AI in 2021 indicate that AI 

adoption continues to grow and that the benefits remain significant. A majority of McKinsey survey 

respondents now say their organizations have adopted AI capabilities, as AI’s impact on the bottom line is 

growing. 

However, operationalizing and scaling machine learning to drive business value can be challenging. My 

experience has shown that, while many businesses have started diving into it, only a few data science 

projects actually make it to production. Moving from the experiment phase of ML to real-world 

deployment is difficult, as the journey requires finetuning ML models to fit the practical needs of a 

business and ensuring the solution can be implemented at scale. 

ML Operationalization: 

https://www.mckinsey.com/capabilities/quantumblack/our-insights/global-survey-the-state-of-ai-in-2021


   
 

 

Source Nvidia Blog: What Is MLOps? 

Models as part of an experiment are good, but models in production are great. MLOps, as the name 

implies, brings operationalization to the table, providing resources for bringing models from test 

environments into production. 

Analysis's Target 

https://blogs.nvidia.com/blog/2020/09/03/what-is-mlops/


   
 

The goal of this notebook is to extract insights from the responses of 2022 Kaggle Machine Learning & 

Data Science Survey about the state of AI Adoption and ML Operationalization in the industry in 2022 as 

well as about the Data Science landscape in the market. As I'm curious to see how the MLOps and AI 

adoption progressing in other organizations and what's the current trends in Data Science I'll try to 

enlighten the following main topics: 

1. What's the state of Machine Learning adoption in the enterprise today? 

● What's the percentage of enterprises deploying data science and machine learning in 

production today? 

● Does the company's size or sector play a role in AI Adoption? Are larger companies more 

likely than smaller companies to have deployed AI in their organization? 

2. What's the enterprise AI tech stack? The modern AI stack is a collection of tools, services, and 

processes imbibed with MLOps practices that allow developers and operations teams to build ML 

pipelines efficiently in terms of resource utilization, team efforts, end-user experience, and 

maintenance activities. It would be interesting if, for instance, we would answer the following 

questions: 

● Are Cloud-native solutions a must-have for business today? 

● What are the most popular tools for Data Storage, Data Management, AutoML, Business 

Intelligence, etc.? 

● What frameworks and libraries are commonly used in the market for Machine Learning 

and Data Science? 

● Are transfer learning methods mature enough to be used in the business environment? 

● Do we really work with big data and deep learning methods to such an extent that we 

need specialized hardware for ML models training? 

3. AI Careers & Job Outlook in 2022: 

● What are the top AI job positions? 

● What does an AI professional do? 

● What are the professional AI skills in demand for 2022? 

4. AI Salary Overview 

Methodology 

In order to have as much as I can a representative dataset for the analysis, I'll keep in the dataset only the 

professionals, namely the respondents that fulfill the criteria listed below: 

● currently are not students (answer No the Q5 question) 

● currently are employed (They didn't answer "Currently not employed" to the Q23 question) 

https://www.kaggle.com/competitions/kaggle-survey-2022
https://www.kaggle.com/competitions/kaggle-survey-2022


   
 

● have answered in what industry they are currently employed (or their most recent employer if 

retired) - Q24 question has an answer, not None 

As it can be seen below, ~ 37.9% of the total responses meet the above criteria and the analysis will be 

conducted based on these responses. 
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In [6]: 

mpl.rcParams.update(mpl.rcParamsDefault) 

 

fig1 = plt.figure(figsize=(5,2),facecolor='white') 

 

ax1 = fig1.add_subplot(1,1,1) 

font = 'monospace' 

ax1.text(0.9, 0.8, "Key figures",color='#7b6b59',fontsize=26, fontweight='bold', fontfamily=font, 

ha='center') 

 

 

ax1.text(0, 0.4, "{:,d}".format(df.shape[0]), color='#e60000', fontsize=24, fontweight='bold', 

fontfamily=font, ha='center') 

ax1.text(0, 0.001, "# of respondents \nin the survey",color='#757575',fontsize=15, fontweight='light', 

fontfamily=font,ha='center') 

 

ax1.text(0.6, 0.4, "{}".format(scope_df.shape[0]), color='#e60000', fontsize=24, fontweight='bold', 

fontfamily=font, ha='center') 

ax1.text(0.6, 0.001, "# of professionals",color='#757575',fontsize=15, fontweight='light', 

fontfamily=font,ha='center') 

 



   
 

 

ax1.text(1.5, 0.4, "{}".format(round((scope_df.shape[0]/df.shape[0] )*100, 2))+"%", color='#e60000', 

fontsize=24, fontweight='bold', fontfamily=font, ha='center') 

ax1.text(1.5, 0.001, "of the respondents are in the analysis \nscope",color='#757575',fontsize=15, 

fontweight='light', fontfamily=font, ha='center') 

 

ax1.set_yticklabels('') 

ax1.tick_params(axis='y',length=0) 

ax1.tick_params(axis='x',length=0) 

ax1.set_xticklabels('') 

 

for direction in ['top','right','left','bottom']: 

    ax1.spines[direction].set_visible(False) 

 

fig1.subplots_adjust(top=0.9, bottom=0.2, left=0, hspace=1) 

 

fig1.patch.set_linewidth(3) 

fig1.patch.set_edgecolor('#E6b6a4') 

fig1.patch.set_facecolor('white') 

ax1.set_facecolor('white') 

     

plt.show() 

 



   
 

 

Outlier Analysis 

It would be also interesting to examine if there are some "outlier respondents" that have marked all the 

answers for the multiple-choice questions. 

For that, I calculated the average number of choices that each respondent selected in the multiple-choice 

questions. I found out that each respondent selects 1 - 2 options in the multiple-choice questions on 

average. 

Only 2% of the respondents in the scope have an average number of selections greater than 3, which 

cannot affect the results of the analysis. Also, it doesn't necessarily mean that we have to address them 

as outliers. One explanation would be that they might have many years of coding or ML experience, 

so makes sense to be familiar with many frameworks and work with a variety of libraries. 

As the tables below illustrate, this hypothesis is valid since the biggest percentage of the respondents with 

more than 3 selections on average, have strong coding and machine learning experience. 

So I won't discard these respondents or treat them differently. 

unfold_lessHide code 

In [7]: 

# Collect all the multiple-choice questions 

multiple_choice_questions = {} 

seen_columns = [] 

 

for col in df.columns: 



   
 

    question = col.split("_")[0] 

    if question in seen_columns: 

        if question not in multiple_choice_questions: 

            multiple_choice_questions[question] = 2 

        else:  

            multiple_choice_questions[question] = multiple_choice_questions[question] + 1 

    else: 

        seen_columns.append(question) 

 

# Create a new column in the dataframe for each of the multiple-choice questions which 

# shows the number of the choices that the respondent selected for each one respectively. 

for col in list(multiple_choice_questions.keys()): 

    scope_df[f"{col}_number_of_responses"] = scope_df.apply( 

        lambda x : extract_the_number_of_responses(col,x, df.columns), axis = 1) 
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In [8]: 

respondents_mean_responses = scope_df[[f"{col}_number_of_responses" for col in 

list(multiple_choice_questions.keys())]].mean(axis = 1).reset_index().rename(columns={0: "Mean number 

of responses"}) 

#respondents_mean_responses["Mean number of responses"].mean() 

# (respondents_mean_responses[ 

#     respondents_mean_responses["Mean number of responses"] > 3 



   
 

# ].shape[0]/scope_df.shape[0])*100 

 

outliers = scope_df.filter(items=respondents_mean_responses[respondents_mean_responses["Mean 

number of responses"] > 3]["index"].to_list(), axis=0) 

outliers = outliers.groupby( 

    ["Q16"] 

).agg( 

    {"Q2" : "count"} 

).reset_index().rename( 

    columns={"Q2": "Nbr of respondents", "Q16": "Years of Machine Learning Experience"} 

).sort_values(by=["Years of Machine Learning Experience"]) 

outliers["%"] = outliers.apply(lambda x : x["Nbr of respondents"] / outliers["Nbr of respondents"].sum(), 

axis = 1) 

outliers["%"] = np.round(outliers["%"]* 100, 2) 

outliers.style.background_gradient(axis=0,  cmap='YlOrBr', subset=["%"]) 

 

Out[8]: 

  Years of Machine Learning Experience Nbr of respondents % 

0 2. < 1 years 12 6.320000 

1 3. 1-2 years 30 15.790000 



   
 

2 4. 2-3 years 34 17.890000 

3 5. 3-4 years 24 12.630000 

4 6. 4-5 years 27 14.210000 

5 7. 5-10 years 49 25.790000 

6 8. 10-20 years 14 7.370000 
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In [9]: 

outliers = scope_df.filter(items=respondents_mean_responses[respondents_mean_responses["Mean 

number of responses"] > 3]["index"].to_list(), axis=0) 

outliers = outliers.groupby( 

    ["Q11"] 

).agg( 

    {"Q2" : "count"} 

).reset_index().rename( 

    columns={"Q2": "Nbr of respondents", "Q11": "Years of Coding Experience"} 

).sort_values(by=["Years of Coding Experience"]) 

outliers["%"] = outliers.apply(lambda x : x["Nbr of respondents"] / outliers["Nbr of respondents"].sum(), 

axis = 1) 



   
 

outliers["%"] = np.round(outliers["%"]* 100, 2) 

outliers.style.background_gradient(axis=0,  cmap='YlOrBr', subset=["%"]) 

 

Out[9]: 

  Years of Coding Experience Nbr of respondents % 

0 2. < 1 years 10 5.260000 

1 3. 1-3 years 32 16.840000 

2 4. 3-5 years 28 14.740000 

3 5. 5-10 years 50 26.320000 

4 6. 10-20 years 41 21.580000 

5 7. 20+ years 29 15.260000 

In the table below, we can also see the average number of choices that respondents selected for each of the 

multiple-choice questions and we might be able to conclude the following findings: 

● The professionals who participated in the survey, use on average 2 programming languages on a 

regular basis, 3 Machine Learning Algorithms, and 2 Machine Learning Frameworks. 



   
 

● In addition, they usually don't use natural language processing (NLP) methods like Word 

embeddings/vectors (GLoVe, fastText, word2vec), Encoder-decoder models (seq2seq, vanilla 

transformers), Contextualized embeddings, or Transformer language models 

unfold_lessHide code 

In [10]: 

outlier_analysis = [] 

 

for col in list(multiple_choice_questions.keys()): 

    mean_responses = round(scope_df[f"{col}_number_of_responses"].mean()) 

    outlier_analysis.append([ 

        col, 

        multiple_choice_questions[col],  

        mean_responses, 

    ]) 

     

average_responses = pd.DataFrame(outlier_analysis, columns = ["Question", "Nbr of available Choices", 

"Average number of selected choices"]) 

average_responses["Question Title"] = questions_titles[[f"{col}_1" for col in 

list(multiple_choice_questions.keys())]].loc[0].to_list() 

average_responses["Question Title"] = average_responses["Question Title"].apply(lambda x : 

x.split("(Select")[0].strip()) 

 

#Updates the DataFrame in place 

scope_df.drop([f"{col}_number_of_responses" for col in list(multiple_choice_questions.keys())], axis = 1, 

inplace=True) 

 



   
 

average_responses["Question Title"] = average_responses['Question Title'].str.wrap(80) 

average_responses = average_responses[["Question", "Question Title", "Nbr of available Choices", 

"Average number of selected choices"]] 

wrap_df_text(average_responses) 

 

  Question Question Title 
Nbr of available 

Choices 

Average number of 

selected choices 

0 Q6 On which platforms have you begun or completed data science courses? 12 2 

1 Q7 
What products or platforms did you find to be most helpful when you first started studying data 

science? 
7 2 

2 Q10 
Did your research make use of machine learning? - Yes, the research made advances related to 

some novel machine learning method (theoretical research) 
3 0 

3 Q12 What programming languages do you use on a regular basis? 15 2 

4 Q13 
Which of the following integrated development environments (IDE's) do you use on a regular 

basis? 
14 3 

5 Q14 Do you use any of the following hosted notebook products? 16 1 

6 Q15 Do you use any of the following data visualization libraries on a regular basis? 15 2 



   
 

7 Q17 Which of the following machine learning frameworks do you use on a regular basis? 15 2 

8 Q18 Which of the following ML algorithms do you use on a regular basis? 14 3 

9 Q19 Which categories of computer vision methods do you use on a regular basis? 8 1 

10 Q20 
Which of the following natural language processing (NLP) methods do you use on a regular 

basis? 
6 0 

11 Q21 Do you download pre-trained model weights from any of the following services? 10 1 

12 Q28 Select any activities that make up an important part of your role at work: 8 2 

13 Q31 Which of the following cloud computing platforms do you use? 12 1 

14 Q33 Do you use any of the following cloud computing products? 5 1 

15 Q34 Do you use any of the following data storage products? 8 1 

16 Q35 
Do you use any of the following data products (relational databases, data warehouses, data 

lakes, or similar)? 
16 1 



   
 

17 Q36 Do you use any of the following business intelligence tools? 15 1 

18 Q37 Do you use any of the following managed machine learning products on a regular basis? 13 1 

19 Q38 Do you use any of the following automated machine learning tools? 8 1 

20 Q39 Do you use any of the following products to serve your machine learning models? 12 1 

21 Q40 Do you use any tools to help monitor your machine learning models and/or experiments? 15 1 

22 Q41 
Do you use any of the following responsible or ethical AI products in your machine learning 

practices? 
9 1 

23 Q42 
Do you use any of the following types of specialized hardware when training machine learning 

models? 
9 1 

24 Q44 Who/what are your favorite media sources that report on data science topics? 12 3 

Ready to move on to the next sections of the Deep Dive Analysis? 🤩 

Table of Contents 

● What's the state of Machine Learning adoption in the enterprise today? 

● Overview of the enterprise AI technology stack 

https://www.kaggle.com/code/eraikako/data-science-and-mlops-landscape-in-industry#ml-adoption-state
https://www.kaggle.com/code/eraikako/data-science-and-mlops-landscape-in-industry#ai-tech-stack


   
 

■ Usage of Cloud Computing Platforms 

■ Which cloud computing platforms are used for Machine Learning operations? 

■ Machine Learning tools & products popular in 2022 

■ Frameworks, libraries and languages for Machine Learning & Data Science 

■ Transfer learning in the business world 

■ Usage of specialized hardware for ML models training 

● AI job roles and key skills needed to build a career in AI 

■ AI jobs description: roles, responsibilities and skills required 

■ Data science team sizing 

■ What education do AI specialists need? 

● Artificial Intelligence salaries (by role, industry, education & more) 

● Conclusion 

● References 

What's the state of Machine Learning adoption in the 

enterprise today? 

The first thing that I want to understand from the survey responses, is the state of ML adoption in different 

industries today. In the 2022 Kaggle Machine Learning & Data Science survey of 9,094 professionals 

coming from different industries, as it can be seen in the chart below, 

● a percentage of 25.52% working in tech companies, 

● a 15.91% in the academic field, 

● and the rest distributed from the finance sector to shipping and transportation. 

Which sector would you bet is a high performer in AI and has made big progress in terms of AI 

adoption? 

Before I answer that, let's see how AI adoption looks like broadly, across all sectors, in 2022. 

unfold_moreShow hidden code 
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The data shows that about ~ 33% of respondents say that their organizations have Machine Learning 

models in production, either in an advanced stage or in an intermediate stage (they recently started using 

ML methods), while a percentage of 10.2% uses ML methods for generating insights. However, a 

considerable percentage of the participants, 21.7%, answered that their companies haven't started yet using 

AI and ML techniques while 17.1% of the respondents say that have started exploring the capabilities of 

this new technology. 

unfold_moreShow hidden code 

32.8%21.7%18.3%17.1%10.2% 

Models in ProductionNot StartedNot KnownExploration StageGenerating InsightsThe State of the ML 

Adoption in Inudstry in 2022 

Models in ProductionNot StartedNot KnownExploration StageGenerating Insights4. Advance StageWell 

Established ML3. Intermediate StageRecently Started Using ML0. Not Started(No ML)Not Known1. 

ExplorationOnly Exploring ML2. Beginner StageUse ML only for Insights 

Now, let's come back to the question above and try to answer it by extracting some insights from the 

survey results. 

It is clear in the following chart that companies providing Internet-based services have a better adoption 

of Machine Learning and Data Science followed by Insurance companies, whereas non-profit 

organizations and the government sector score undoubtedly lower for the adoption of various AI-

related technologies. A key reason for the lower AI adoption among governments and non-profit 

organizations is the bureaucracy and the established processes that take too long. In these sectors, might be 

less encouragement for employees to take risks and innovate. 

In the private sector, employers tend to put a strong focus on experimentation, innovation, and growth. For 

instance, companies providing Internet-based services could gather many data from the user's online 

activities and the employees can apply analytics and other innovative ideas in order to improve the services 

that their company provides. The insurance sector is also leveraging AI technologies for insurance advice, 

underwriting claims processing, fraud prevention, risk management, and direct marketing. Customer 

behavior and advances in technology have opened the door for AI in the insurance market to create value, 

reduce costs, increase efficiency and achieve higher customer satisfaction and trust. Retail has also 



   
 

embraced AI technologies, with 27% of the professionals working in the retail sector, saying their 

companies have well-established machine learning methods in production. 

unfold_moreShow hidden code 

Academics/EducationAccounting/FinanceBroadcasting/CommunicationsComputers/TechnologyEnergy/M

iningGovernment/Public ServiceInsurance/Risk 

AssessmentManufacturing/FabricationMarketing/CRMMedical/PharmaceuticalNon-profit/ServiceOnline 

Service/Internet-based ServicesOtherRetail/SalesShipping/Transportation Not Started(No ML) Exploration

Only Exploring ML Beginner StageUse ML only for Insights Intermediate StageRecently Started Using 

ML Advance StageWell Established ML 

101520253035PercentThe State of Machine Learning Adoption by IndustryQuestions Data: Industry (Q24) 

and ML Adoption State (Q27)Size,Color: Percentage of Respondents - The number of respondents of the 

related sector that chose the relevant adoption stage of their company divided by the total number of 

respondents working in that sector. 
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1. 0-49 employees2. 50-249 employees3. 250-999 employees4. 1000-9,999 employees5. 10,000 or more 

employees0100200300400500600700800900 

Models in ProductionExploration StageGenerating InsightsNot StartedProductionization of ML models by 

Company's size 

Another important insight that comes up from the analysis is that big companies are leading the way in 

AI adoption. 

The survey results show that larger companies, with 1000-9,999 employees or more than 10,000 are the 

leading AI adopters. There are several reasons that may explain why larger companies outpace smaller 

ones in AI adoption. For one, because large firms tend to serve large markets, they can better amortize the 

high fixed costs associated with employing AI production technologies over more sales. In addition to that, 

larger firms offer higher wages and more benefits, increasing the pool of top AI talent these firms have 

access to. Finally, because vendors of AI systems benefit from supplying companies with the largest 



   
 

consumer base, vendors may focus on creating relationships and contracts with larger firms, enabling these 

firms to be more exposed to the value AI systems can bring to their businesses. 

In the next section, I'll explore tools and practices used in the market, according to the survey responses to 

establish an adaptable infrastructure for Machine learning and Data Science projects. 

Overview of the enterprise AI technology stack 

Machine learning was mainly in the experimental stage in the enterprise market not long ago. The Data 

Science teams always start with a Proof Of Concept (POC) approach and eventually gain traction even 

with a non-standardized production deployment process because of the business results achieved by the 

model. In order to scale this solution successfully with re-usability and reliability, the AI stack requires 

hardware and software optimizations in architectural areas of computing, memory, and networking. 

Usage of Cloud Computing Platforms 

According to several reports about the Cloud Computing Market in 2022, the adoption of cloud 

technologies continues to accelerate. Cloud computing has influenced the rise of machine learning and 

artificial intelligence. Factors such as affordable storage, availability of GPUs, faster AI training and 

inferencing performance, lower costs, and protection against attacks made machine learning accessible and 

affordable to businesses. Most companies lack the infrastructure and expertise to implement AI 

applications themselves. 

As the following radar chart depicts, companies that have models in production use also cloud computing 

platforms which is reasonable since the cloud makes it easy for enterprises to experiment with machine 

learning capabilities and scale up as projects go into production and demand increases. 

unfold_moreShow hidden code 

Out[15]: 

  Usage of Cloud Computing Platforms Nbr of respondents % 

https://www.businesswire.com/news/home/20220831005645/en/Global-Cloud-Computing-Market-Report-2022-Increased-Resource-User-Mobility-and-Ongoing-Migration-of-Applications-Over-the-Cloud-Driving-Growth---ResearchAndMarkets.com


   
 

0 No 4994 54.920000 

1 Yes 4100 45.080000 

unfold_moreShow hidden code 

0. Not Started(No ML)1. ExplorationOnly Exploring ML2. Beginner StageUse ML only for Insights3. 

Intermediate StageRecently Started Using ML4. Advance StageWell Established MLNot 

Known0200400600800100012001400 

Cloud Usage: YesCloud Usage: NoCloud Usage by ML Adoption 

Which cloud computing platforms are used for Machine Learning 

operations? 

In the following visualizations, we can see the most popular cloud computing platforms by sector as well 

as by country. It is immediately obvious that Amazon Web Services (AWS) and Google Cloud Platform 

(GCP) are the dominant ones as well as that Alibaba Cloud is quite famous in Asia. 
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Amazon Web Services (AWS) Microsoft Azure Google Cloud Platform (GCP) IBM Cloud Oracle Cloud 

SAP Cloud VMware Cloud Alibaba Cloud Tencent Cloud Huawei Cloud 

Academics/EducationAccounting/FinanceBroadcasting/CommunicationsComputers/TechnologyEnergy/M

iningGovernment/Public ServiceInsurance/Risk 

AssessmentManufacturing/FabricationMarketing/CRMMedical/PharmaceuticalNon-profit/ServiceOnline 

Service/Internet-based ServicesOtherRetail/SalesShipping/Transportation 

5101520253035PercentCloud Computing In Different IndustriesQuestions Data: Industry (Q24) and Cloud 

Computing Platform (31)Size,Color: Percentage of Respondents - The number of respondents of the 



   
 

related sector that chose the relevant Cloud Computing Platformdivided by the total number of respondents 

working in that sector. 
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Google Cloud Platform (GCP)Amazon Web Services (AWS)Microsoft AzureAlibaba CloudMost Popular 

Cloud Computing Platform by Country 

Machine Learning tools & products popular in 2022 

The following graphs summarize the usage patterns of other tools, techniques, databases, platforms, and 

frameworks used by professionals. 

unfold_moreShow hidden code 

Note: The following chart is interactive, Click on the Clusters to view more details 

Data Products: %Cloud Computing Platforms: %BI Tools: %Data Storage Products: %Cloud Computing 

Products: %ML Products: %Auto ML: % 

Each company has a unique technology stack with software that they prefer to use with their proprietary 

data. There are a number of different platforms that go into each category of the stack. These categories 

include Visualization & Analytics, Computation, Storage Distribution & Data Warehouses. There are too 

many platforms to count, but in the following illustration, I’ll be going over the popular cloud computing 

services and products that I have seen across the survey responses, offered by the top 4 giant Tech 

Companies: Amazon, Google, Microsoft & IBM. 

● Amazon top products: 

■ The most commonly used product provided by Amazon is Amazon Web Services 

(AWS) cloud computing platform, as it is used by 2346 respondents out of 9094 (25.8% 

of the professionals). 

■ The second most popular is the Amazon Simple Storage Service (S3) as it's used by 

17.8% of the respondents in the scope. 

● Google top products: 



   
 

■ As above, the most popular product offered by Google is its cloud computing platform, 

Google Cloud Platform (GCP), used by 22.6% of the respondents. 

■ Secondly comes the Google Cloud Compute Engine which is slightly more popular than 

the Google Cloud Storage. 

● Microsoft top products: The Microsoft products that dominate in the market according to the 

survey respondents' choices are Microsoft Power BI (18.23% of the responses in scope) and 

Microsoft Azure (used by 15.57% of the respondents), and so it ranks 3rd in the list with the top 

cloud computing platforms (1st: AWS, 2nd: GCP). 

● IBM top products: From IBM products, the IBM Watson Studio, followed by the IBM Cloud / 

Red Hat has gained the most popularity. 

NOTES: 

● The size of the rectangles in the third level of the treemap indicates the number of respondents 

using the relevant product/service, while the size of the rectangles and the counts respectively in 

the second level doesn't correspond to the number of respondents using Amazon, Google, etc. in 

general. The counts of each of the 4 companies in the second level of the map are just the sum of 

the respondents that use each of their services/products in the 3rd level. However, if the same user 

uses two or more products, provided by the same company it will be counted twice in the total 

sum of the second level. That's why the counts in the second level should not be taken into 

account as they do not represent the accurate total number of respondents that use them (it's a 

higher number than expected). 

● The color of the rectangles in the third level of the treemap indicates the percentage of the 

respondents using the relevant product/service and it is applied the same logic as above. 
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AI Tech StackAmazonGoogleMicrosoftIBM Amazon Web Services (AWS) Amazon Simple Storage 

Service (S3) Amazon Elastic Compute Cloud (EC2) Amazon SageMaker Amazon RDS Amazon 

Sagemaker Studio Amazon Elastic File System (EFS) Amazon Redshift Amazon DynamoDB Amazon 

Sagemaker Studio Lab Amazon Sagemaker Autopilot Amazon QuickSight Amazon AI Ethics Tools 

(Clarify, A2I, etc) Amazon EMR Notebooks Google Cloud Platform (GCP) Google Cloud Compute 

Engine Google Cloud Storage (GCS) Google Cloud BigQuery Google Data Studio Google Cloud Filestore 

Google Cloud AutoML Google Cloud SQL Google Cloud Vertex AI Workbench Google Cloud Vertex AI 

Google Responsible AI Toolkit (LIT, What-if, Fairness Indicator, etc) Microsoft Power BI Microsoft 

Azure Microsoft SQL Server Microsoft Azure Virtual Machines Microsoft Azure Blob StorageMicrosoft 

Azure SQL Database Microsoft Azure Files Azure Notebooks Azure Machine Learning Studio Azure 

Automated Machine Learning Microsoft Responsible AI Resources (Fairlearn, Counterfit, InterpretML, 



   
 

etc) Microsoft Azure Synapse IBM Watson Studio IBM Cloud / Red Hat IBM Db2 IBM AI Ethics tools 

(AI Fairness 360, Adversarial Robustness Toolbox, etc 

0.050.10.150.20.25relative_percent 

Frameworks, libraries and languages for Machine Learning & Data 

Science 
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1.51% 1.75% 5.6% 7.25% 9.09% 11% 11.39% 13.28% 13.72% 15.02% 21.23% 47.35% 79.9% 

00.20.40.60.8JuliaGoPHPC#MATLABBashCJavaC++JavascriptRSQLPython6.72% 7.63% 9.17% 9.59% 

13.01% 17.65% 17.78% 19.94% 23.71% 24.6% 40.84% 60.88% 00.20.40.6IntelliJ MATLAB Vim / 

Emacs Sublime Text Spyder RStudio Visual Studio Notepad++ JupyterLab PyCharm Visual Studio Code 

Jupyter Notebook 

Top programming languages for Data Science & ML in 2022Python Is Essential for Data Analysis and 

Data Science.The length of the bars denotes the percentage of professionals that use the relevant 

language.The counts are also visible by hover. 

When it comes to the programming languages, the bar plot shows that Python is the most popular language 

followed by SQL and R. 

● Python is the dominant language in the Machine Learning and Data Science field with 79.9% of 

the professionals using it for their daily tasks. Python is widely used in the industry, and it is also 

by far the language most recommended to beginners. 

● SQL is necessary required when working with databases. Having at least a basic understanding of 

SQL and database management would go a long way in your career. 

● R: a percentage of 21.2% of the respondents working in industry use R. While in most cases 

Python is the default choice when analyzing data and applying statistical methods, R is preferred 

as we'll see in a later section by many statisticians. 
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In [22]: 



   
 

data_viz_libs = extract_and_count_all_the_multiple_choice_answers("Q15", scope_df) 

data_viz_libs["relative_percent"] = round(data_viz_libs["relative_percent"] * 100,2) 

data_viz_libs = data_viz_libs.rename( 

    columns={"Q15":"Data Visualization Libraries", "counts": "# of respondents", "relative_percent": "% 

of respondents"} 

) 

data_viz_libs = data_viz_libs.sort_values(by=["% of respondents"], 

ascending=False).reset_index(drop=True) 

 

 

ml_frameworks = extract_and_count_all_the_multiple_choice_answers("Q17", scope_df) 

ml_frameworks["relative_percent"] = round(ml_frameworks["relative_percent"] * 100,2) 

ml_frameworks = ml_frameworks.rename( 

    columns={"Q17":"ML Frameworks", "counts": "# of respondents", "relative_percent": "% of 

respondents"} 

) 

ml_frameworks = ml_frameworks.sort_values(by=["% of respondents"], 

ascending=False).reset_index(drop=True) 

 

 

colors = n_colors('rgb(230, 182, 164)', 'rgb(164, 55, 37)', 15, colortype='rgb') 

a = [14,13,12,11,10,9,8,7,6,5,4,3,2,1,0] 

 

 

 

fig = make_subplots( 



   
 

    rows=1, cols=2, 

    #shared_xaxes=True, 

    vertical_spacing=0.03, 

    specs=[[{"type": "table"}, {"type": "table"}], 

          ] 

 

) 

 

fig.add_trace( 

go.Table( 

  header=dict( 

    values=["Data Visualization Libraries", "% of respondents"], 

    line_color='white', fill_color='white', 

    align='center', font=dict(color='black', size=12) 

  ), 

  cells=dict( 

    values=[data_viz_libs["Data Visualization Libraries"], data_viz_libs["% of respondents"]], 

        

                            fill_color=[np.array(colors)[a]], 

    align='center', font=dict(color='white', size=13, family='Arial Rounded MT Bold') 

  )), 

    row=1, col=1 

) 

fig.add_trace( 



   
 

go.Table( 

  header=dict( 

    values=["ML Frameworks", "% of respondents"], 

    line_color='white', fill_color='white', 

    align='center', font=dict(color='black', size=12) 

  ), 

  cells=dict( 

    values=[ml_frameworks["ML Frameworks"], ml_frameworks["% of respondents"]], 

        

                            fill_color=[np.array(colors)[a]], 

    align='center', font=dict(color='white', size=13, family='Arial Rounded MT Bold') 

  )), 

    row=1, col=2 

) 

 

large_title_format = "<span style='font-size:30px; font-family:Times New Roman'>Top Data Visualization 

Libraries and ML Frameworks</span>" 

small_title_format = "<span style='font-size:14px; font-family:Helvetica'></b></span>" 

 

 

fig.update_layout( 

    height=600, 

    font = dict(color = '#7b6b59'), 

    showlegend=False, 

    title = large_title_format + "<br>" + small_title_format, 



   
 

) 

 

fig.show() 

 

Matplotlib Seaborn Plotly / Plotly Express Ggplot / ggplot2 None Shiny Geoplotlib Bokeh D3 js Leaflet / 

Folium Other Altair Pygal Highcharter Dygraphs Data 

VisualizationLibraries64.1949.9727.5720.9513.466.394.964.664.333.363.111.681.1410.88% of 

respondents Scikit-learn TensorFlow Keras Xgboost PyTorch LightGBM Huggingface CatBoost None 

PyTorch Lightning Caret Fast.ai Other Tidymodels JAX ML 

Frameworks57.5237.4231.7826.7126.0813.038.717.136.325.285.173.63.313.281.07% of respondents 

Top Data Visualization Libraries and ML Frameworks 

An important task in Data Science is representing information in a visual context. How can you make it 

easy to understand real-time trends and business insights present in the data? 

The answer is ... Data Visualizations!!! 

Can you believe that the human brain takes only 13 milliseconds to process an image? 

Humans love stories, and visualizations allow us to create one from data. Understanding data requires the 

use of data visualizations, and this is because visuals are processed 60,000 times faster than text inside the 

human brain. Using charts or graphs to visualize vast amounts of complex information is more 

straightforward than digging spreadsheets or reports. 

The table above at the left provides the top Data Visualization Libraries that are excellent choices for 

creating visually appealing and insightful data representations according to the survey respondents, with 

the top-end respondents mainly preferring and using the originals Matplotlib, Seaborn, and Plotly, with 

Ggplot for R. 

Without surprising us, the top Machine Learning Frameworks are Scikit-learn, followed by Tensorflow 

and Keras which are usually used for productionizing Deep Learning Models. Both frameworks are user-

friendly and they provide high-level APIs for building and training models easily. 
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In [23]: 

dfs_list = [] 

 

for col in [column for column in df.columns if column.startswith("Q18")]: 

    dfs_list.append(scope_df.groupby([col]).agg({"Q2" : "count"}).reset_index().rename(columns={"Q2": 

"counts", col: "ML Algorithms"})) 

 

ml_algorithms = pd.concat(dfs_list) 

ml_algorithms["relative_percent"] = ml_algorithms.apply(lambda x : x["counts"] / scope_df.shape[0], axis 

= 1) 

 

 

ml_algorithms = ml_algorithms.sort_values(by=["relative_percent"], ascending=True) 

ml_algorithms = ml_algorithms[~ml_algorithms["ML Algorithms"].isin(["None", "Other"])] 

 

create_single_bar_plot( 

    x_values=ml_algorithms["relative_percent"].to_list(),  

    y_values=ml_algorithms["ML Algorithms"].to_list(), 

    display_text=np.round((ml_algorithms["relative_percent"] *100), decimals = 2), 

    top_n=3, 

    rest_n=ml_algorithms.shape[0]-3,  

    hovertext = ml_algorithms["counts"].to_list(), 

    title="Top 12 Machine Learning Algorithms", 

    subtitle="",  

    orientation="h" 



   
 

) 

 

4.35% 5.59% 6.45% 7.11% 13.1% 16.99% 17.61% 18.94% 29.62% 32.82% 48.35% 56.81% 

0.0%20.0%40.0%Evolutionary ApproachesGenerative Adversarial NetworksGraph Neural 

NetworksAutoencoder Networks (DAE, VAE, etc)Transformer Networks (BERT, gpt-3, etc)Recurrent 

Neural NetworksDense Neural Networks (MLPs, etc)Bayesian ApproachesConvolutional Neural 

NetworksGradient Boosting Machines (xgboost, lightgbm, etc)Decision Trees or Random ForestsLinear or 

Logistic Regression 

Top 12 Machine Learning Algorithms 

In terms of the top commonly used Machine Learning Algorithms we can see first in the list the Linear or 

Logistic Regression, followed by Decision Trees or Random Forests. That's neither a surprise for a 

couple of reasons: 

1. These algorithms perform very well and achieve high accuracy in a variety of tasks with 

structured data, 

2. they are easy to implement and they don't require huge hardware resources and time for training 

and/or inferencing. 

3. Another important reason is that these Machine Learning methods offer interpretability and 

explainability that are becoming essential in solutions we build nowadays. Especially in fields 

such as healthcare or banking, interpretability and explainability could for example help overcome 

some legal constraints. In solutions that support a human decision, it is essential to establish a 

trust relationship and explain the outcome and the internal mechanics of an algorithm. The 

whole idea behind interpretable and explainable ML is to avoid the black box effect. 

Next on the list is the Gradient Boosting Machines which are really powerful methods that usually 

achieve good accuracy, while later we can see the "Black Boxes algorithms" such as Convolutional Neural 

Networks, Transformer networks, Autoencoder, etc. that perform very well when we have unstructured 

data, such as text and images. 

The same insights are also reflected in the second plot below, where it can be seen that Linear or Logistic 

Regression, and Decision Trees or Random Forests are commonly used across all sectors whereas 

Convolutional Neural Networks are most popular in tech companies, used by the 37% of the respondents 

working in the tech sector. They are also used in the Academic field where research scientists explore new 



   
 

algorithms for processing images, videos or text. These sectors usually don't lack in training resources and 

interpretability is not a must-have. 

unfold_moreShow hidden code 

Linear or Logistic RegressionDecision Trees or Random ForestsGradient Boosting Machines Bayesian 

ApproachesEvolutionary ApproachesDense Neural Networks Convolutional Neural NetworksGenerative 

Adversarial NetworksRecurrent Neural NetworksTransformer Networks Autoencoder Networks Graph 

Neural 

NetworksAcademics/EducationAccounting/FinanceBroadcasting/CommunicationsComputers/Technology

Energy/MiningGovernment/Public ServiceInsurance/Risk 

AssessmentManufacturing/FabricationMarketing/CRMMedical/PharmaceuticalNon-profit/ServiceOnline 

Service/Internet-based ServicesOtherRetail/SalesShipping/Transportation 

102030405060PercentCommonly Used Machine Learning Algorithms in Different IndustriesQuestions 

Data: Industry (Q24) and ML Algorithm (Q18)Size,Color: Percentage of Respondents - The number of 

respondents of the related sector that chose the relevant ML Algorithmdivided by the total number of 

respondents working in that sector. 

Transfer learning in the business world 

Transfer learning is quite popular nowadays and it aims to save time and effort and provides the advantage 

of using tested models. This way, companies cut costs by avoiding the need for a high-cost GPU for 

retraining the model. The goal is to make machine learning as human as possible. Transfer learning is 

mostly used in computer vision and natural language processing tasks due to the huge amount of 

computational power required. 

The following charts represent the percentage of respondents that use pre-trained models, specified below, 

for Computer Vision and NLP respectively on a regular basis. 

It is clear that a higher percentage of respondents use pre-trained image classification models rather than 

transformer language models which is kinda expected due to "ImageNet moment". 

Pretraining entire models to learn both low and high-level features has been practiced for years by the 

computer vision (CV) community. Most often, this is done by learning to classify images on the large 



   
 

ImageNet dataset. ULMFiT, ELMo, and the BERT model have the last years brought the NLP community 

an "ImageNet for language"---that is, a task that enables models to learn higher-level nuances of language, 

similarly to how ImageNet has enabled the training of CV models that learn general-purpose features of 

images. So, I expect the next years to see also a bigger percentage of professionals in AI use pre-trained 

models for NLP tasks. 

unfold_lessHide code 

In [25]: 

map_cv_methods = { 

    "Vision transformer networks (ViT, DeiT, BiT, BEiT, Swin, etc)": "Vision transformer<br>networks" ,  

    "Generative Networks (GAN, VAE, etc)": "Generative Networks", 

    "General purpose image/video tools (PIL, cv2, skimage, etc)": "General purpose<br><sup>image/video 

tools</sup>",  

    "Object detection methods (YOLOv6, RetinaNet, etc)": "Object detection<br>methods", 

    "Image classification and other general purpose networks (VGG, Inception, ResNet, ResNeXt, NASNet, 

EfficientNet, etc)": "Image classification Nets", 

    "Image segmentation methods (U-Net, Mask R-CNN, etc)": "Image segmentation<br>methods" 

} 

 

map_nlp_methods = { 

    "Contextualized embeddings (ELMo, CoVe)": "Contextualized<br>embeddings" ,  

    "Encoder-decoder models (seq2seq, vanilla transformers)": "Encoder-decoder models", 

    "Word embeddings/vectors (GLoVe, fastText, word2vec)": "Word embeddings<br><sup>GLoVe, 

fastText, word2vec</sup>",  

    "Transformer language models (GPT-3, BERT, XLnet, etc)": "Transformer <br>language models", 

 

} 



   
 

 

computer_vision_methods =  extract_and_count_all_the_multiple_choice_answers("Q19", scope_df) 

computer_vision_methods = computer_vision_methods[~computer_vision_methods["Q19"].isin(["None", 

"Other"])] 

computer_vision_methods["Q19"] = computer_vision_methods["Q19"].apply(lambda x : 

map_cv_methods[x]) 

 

nlp_methods = extract_and_count_all_the_multiple_choice_answers("Q20", scope_df) 

nlp_methods = nlp_methods[~nlp_methods["Q20"].isin(["None", "Other"])] 

nlp_methods["Q20"] = nlp_methods["Q20"].apply(lambda x : map_nlp_methods[x]) 

 

 

pre_trained_models =  extract_and_count_all_the_multiple_choice_answers("Q21", scope_df) 

pre_trained_models["Q21"] = np.where(pre_trained_models["Q21"] == "No, I do not download pre-

trained model weights on a regular basis", "No, I do not download <br>pre-trained model weights", 

pre_trained_models["Q21"]) 

 

 

traces = dict() 

 

     

# Creating the bar chart 

trace_nlp = get_bar_plot_trace( 

    nlp_methods["relative_percent"].to_list(), 

    nlp_methods["Q20"].to_list(), 

    np.round((nlp_methods["relative_percent"] *100), decimals = 2), 



   
 

    2,  

    nlp_methods.shape[0]-2,  

    nlp_methods["counts"].to_list() 

)  

 

 

trace_cv = get_bar_plot_trace( 

    computer_vision_methods["relative_percent"].to_list(), 

    computer_vision_methods["Q19"].to_list(), 

    np.round((computer_vision_methods["relative_percent"] *100), decimals = 2), 

    2,  

    computer_vision_methods.shape[0]-2,  

    computer_vision_methods["counts"].to_list() 

)  

 

 

trace_models = get_bar_plot_trace( 

    pre_trained_models["Q21"].apply(lambda x : x.split("(")[0]).to_list(), 

    pre_trained_models["relative_percent"].to_list(), 

    np.round((pre_trained_models["relative_percent"] *100), decimals = 2), 

    3,  

    pre_trained_models.shape[0]-3,  

    pre_trained_models["counts"].to_list(), 

    orientation = "v" 



   
 

)  

 

traces["NLP_methods"] = trace_nlp 

traces["CV_methods"] = trace_cv 

 

 

fig = make_subplots( 

    rows=1,  

    cols=2 , 

    shared_yaxes=False,  

    shared_xaxes=True,  

    horizontal_spacing = 0.15,  

    subplot_titles=("Most common Computer Vision methods", "Most common NLP methods", "Do you 

download Pre-Trained Models for Transfer Learning?")) 

 

 

fig.append_trace(traces["CV_methods"],1,1) 

fig.append_trace(traces["NLP_methods"],1,2)             

 

large_title_format = "<span style='font-size:30px; font-family:Times New Roman'>How Transfer 

Learning is being used today</span>" 

small_title_format = "<span style='font-size:14px; font-family:Helvetica'>The length of the bars denotes 

the <b>percentage of professionals in the field that use the specified model</b>.</span>" 

 

 

layout = dict( 



   
 

    title = large_title_format + "<br>" + small_title_format + "<br><br>", 

    showlegend = False, 

    font = dict(color = '#7b6b59'), 

    margin = dict(t=150), 

    plot_bgcolor='#fff', 

    bargap = 0.10, 

 

) 

 

 

fig['layout'].update(layout) 

 

fig.show() 

 

large_title_format = "<span style='font-size:22px; font-family:Times New Roman'>Do you download pre-

trained model weights from any <br>of the public available services? </span>" 

 

 

fig = go.Figure(trace_models) 

layout = dict( 

    title = large_title_format + "<br>", 

    showlegend = False, 

    font = dict(color = '#7b6b59'), 

    margin = dict(t=40), 

    plot_bgcolor='#fff', 



   
 

    bargap = 0.10, 

 

) 

 

 

fig['layout'].update(layout) 

 

fig.show() 
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NetworksGeneral purposeimage/video toolsImage segmentationmethodsObject detectionmethodsImage 

classification Nets3.68% 9.16% 13.18% 13.2% 00.050.1ContextualizedembeddingsEncoder-decoder 

modelsWord embeddingsGLoVe, fastText, word2vecTransformer language models 

How Transfer Learning is being used todayThe length of the bars denotes the percentage of professionals 

in the field that use the specified model.Most common Computer Vision methodsMost common NLP 

methods 

0.89% 2.54% 2.76% 3.12% 3.24% 10.51% 11.93% 15.74% 23.67% 37.49% Jumpstart ONNX models 

Timm Other storage services NVIDIA NGC models PyTorch Hub Huggingface Models TensorFlow Hub 

Kaggle datasets No, I do not download pre-trained model weights00.050.10.150.20.250.30.35 

Do you download pre-trained model weights from any of the public available services? 

NLP Users 

In the tables below, we can then see the number of professionals that use pre-trained models and methods 

for NLP / CV tasks on a regular basis along with the relative percentages. The percentages column has 

been calculated by dividing the number of professionals in each role that use CV/NLP methods by the total 

number of respondents that have this job role. The key takeaway is that CV / NLP methods and pre-trained 



   
 

models are used mostly by Machine Learning Engineers, Data Scientists, Data Architects, Developer 

Advocate, and Research Scientists. 

unfold_moreShow hidden code 

Out[26]: 

  Use of NLP Methods and Pre-trained Models Nbr of respondents % 

0 No 7399 81.360000 

1 Yes 1695 18.640000 

unfold_lessHide code 

In [27]: 

# Get the counts of occurrences of each job role 

roles_totals = scope_df["Q23"].value_counts().to_dict() 

 

nlp_usage = scope_df[scope_df["NLP_methods_usage"] == "Yes"].groupby(["Q23"]).agg({"Q2" : 

"count"}).reset_index().rename(columns={"Q2": "Nbr of respondents", "Q23" : "Role"}) 

 

nlp_usage["%"] = nlp_usage.apply(lambda x : x["Nbr of respondents"] / roles_totals[x["Role"]], axis = 1) 

nlp_usage["%"]  = np.round(nlp_usage["%"] * 100, 2) 

nlp_usage = nlp_usage.sort_values(by=["%"], ascending=False).reset_index(drop=True) 

 

nlp_usage.style.background_gradient(axis=0,  cmap='Oranges') 



   
 

 

Out[27]: 

  Role Nbr of respondents % 

0 Machine Learning/ MLops Engineer 251 44.660000 

1 Data Scientist 582 30.420000 

2 Developer Advocate 17 28.810000 

3 Research Scientist 143 24.240000 

4 Data Architect 20 21.050000 

5 Data Engineer 57 16.720000 

6 Software Engineer 157 16.170000 

7 Manager (Program, Project, Operations, Executive-level, etc) 132 15.980000 

8 Teacher / professor 120 14.630000 



   
 

9 Statistician 12 9.760000 

10 Data Analyst (Business, Marketing, Financial, Quantitative, etc) 116 7.670000 

11 Data Administrator 5 7.140000 

12 Engineer (non-software) 32 6.910000 

13 Other 51 6.820000 

Computer Vision Users 

unfold_lessHide code 

In [28]: 

cv_usage = scope_df.groupby( 

    ["CV_methods_usage"] 

).agg({ 

    "Q2" : "count" 

}).reset_index().rename(columns={ 

    "Q2": "Nbr of respondents", 

    "CV_methods_usage": "Use of CV Methods and Pre-trained Models" 

}) 

cv_usage["%"] = np.round((cv_usage["Nbr of respondents"] / scope_df.shape[0]) * 100, 2) 



   
 

cv_usage.style.background_gradient(axis=0,  cmap='Blues') 

 

Out[28]: 

  Use of CV Methods and Pre-trained Models Nbr of respondents % 

0 No 6705 73.730000 

1 Yes 2389 26.270000 

unfold_lessHide code 

In [29]: 

# Get the counts of occurrences of each job role 

roles_totals = scope_df["Q23"].value_counts().to_dict() 

 

cv_usage = scope_df[scope_df["CV_methods_usage"] == "Yes"].groupby(["Q23"]).agg({"Q2" : 

"count"}).reset_index().rename(columns={"Q2": "Nbr of respondents", "Q23" : "Role"}) 

 

cv_usage["%"] = cv_usage.apply(lambda x : x["Nbr of respondents"] / roles_totals[x["Role"]], axis = 1) 

cv_usage["%"]  = np.round(cv_usage["%"] * 100, 2) 

cv_usage = cv_usage.sort_values(by=["%"], ascending=False).reset_index(drop=True) 

 

cv_usage.style.background_gradient(axis=0,  cmap='Oranges') 

 



   
 

Out[29]: 

  Role Nbr of respondents % 

0 Machine Learning/ MLops Engineer 339 60.320000 

1 Research Scientist 241 40.850000 

2 Developer Advocate 22 37.290000 

3 Data Scientist 613 32.040000 

4 Data Architect 30 31.580000 

5 Teacher / professor 242 29.510000 

6 Software Engineer 283 29.150000 

7 Data Engineer 90 26.390000 

8 Manager (Program, Project, Operations, Executive-level, etc) 194 23.490000 



   
 

9 Engineer (non-software) 73 15.770000 

10 Other 90 12.030000 

11 Data Analyst (Business, Marketing, Financial, Quantitative, etc) 155 10.240000 

12 Data Administrator 7 10.000000 

13 Statistician 10 8.130000 

Usage of specialized hardware for ML models training 

There are broadly 2 stages to a Machine Learning project. The first stage is ML Model Training and the 

second stage is the Model Inference. 

Training an ML model requires more computational power and resource. Especially when working with 

Neural Networks, it is essential to process huge amounts of data to train the model. This process usually 

involves some heavy matrix calculations. GPUs are a specialized hardware used for Machine Learning 

because they can perform multiple, simultaneous computations. This enables the distribution of training 

processes and can significantly speed up machine learning operations. With GPUs, we can accumulate 

many cores that use fewer resources without sacrificing efficiency or power. However, GPU is not the only 

specialized hardware that is used for ML. There are also other types of specialized hardware as we'll see 

below, but the GPU is the one that is used most commonly. 

So, when designing our deep learning architecture we have to consider multiple factors for our decision to 

use GPUs or any other specialized hardware or not (dataset size, model size, etc.). As the survey data 

shows only 31% of the respondents use specialized hardware like GPU for ML model training. 



   
 

unfold_lessHide code 

In [30]: 

hardware_usage = scope_df.groupby( 

    ["GPU_usage"] 

).agg({ 

    "Q2" : "count" 

}).reset_index().rename(columns={ 

    "Q2": "Nbr of respondents", 

    "GPU_usage": "Specialized Hardware Usage" 

}) 

hardware_usage["%"] = np.round((hardware_usage["Nbr of respondents"] / scope_df.shape[0]) * 100, 2) 

hardware_usage.style.background_gradient(axis=0,  cmap='Blues') 

 

Out[30]: 

  Specialized Hardware Usage Nbr of respondents % 

0 No 6263 68.870000 

1 Yes 2831 31.130000 

unfold_moreShow hidden code 



   
 

0. Not Started(No ML)1. ExplorationOnly Exploring ML2. Beginner StageUse ML only for Insights3. 

Intermediate StageRecently Started Using ML4. Advance StageWell Established MLNot 

Known0100200300400500600700800 

Specialized hardware usage: YesSpecialized hardware usage for ML models training by ML adoption 

stage 

Companies with Machine Learning Models in production either in an advanced or intermediate stage are 

more likely than the ones that started recently exploring ML capabilities to use GPUs for training their ML 

Models as it can be seen in the illustration above. 

unfold_lessHide code 

In [32]: 

dfs_list = [] 

 

for col in [column for column in df.columns if column.startswith("Q42")]: 

    dfs_list.append(scope_df.groupby([col]).agg({"Q2" : "count"}).reset_index().rename(columns={"Q2": 

"counts", col: "Hardware"})) 

 

hardware = pd.concat(dfs_list) 

hardware["relative_percent"] = hardware.apply(lambda x : x["counts"] / scope_df.shape[0], axis = 1) 

 

 

hardware = hardware.sort_values(by=["relative_percent"], ascending=True) 

hardware = hardware[~hardware["Hardware"].isin(["None", "Other"])] 

 

create_single_bar_plot( 

    x_values=hardware["relative_percent"].to_list(),  



   
 

    y_values=hardware["Hardware"].to_list(), 

    display_text=np.round((hardware["relative_percent"] *100), decimals = 2), 

    top_n=2, 

    rest_n=hardware.shape[0]-2,  

    hovertext = hardware["counts"].to_list(), 

    title="Commonly Used Types of Specialized Hardware", 

    subtitle="",  

    orientation="h" 

) 

 

0.29% 0.43% 0.64% 0.64% 0.74% 7.18% 29.49% 0.0%5.0%10.0%15.0%20.0%25.0%30.0% WSEs 

Trainium Chips RDUs Inferentia Chips IPUs TPUs GPUs 

Commonly Used Types of Specialized Hardware 

Specialized Hardware Users 

The table below shows the number of professionals that use specialized hardware for ML model training. 

The percentages column has been calculated by dividing the number of professionals in each role that use 

GPUs or TPUs, etc. by the total number of respondents that have the same job role. 

unfold_lessHide code 

In [33]: 

roles_totals = scope_df["Q23"].value_counts().to_dict() 

 

gpu_usage = scope_df[scope_df["GPU_usage"] == "Yes"].groupby(["Q23"]).agg({"Q2" : 

"count"}).reset_index().rename(columns={"Q2": "Nbr of respondents", "Q23" : "Role"}) 

 



   
 

gpu_usage["%"] = gpu_usage.apply(lambda x : x["Nbr of respondents"] / roles_totals[x["Role"]], axis = 1) 

gpu_usage["%"]  = np.round(gpu_usage["%"] * 100, 2) 

gpu_usage = gpu_usage.sort_values(by=["%"], ascending=False).reset_index(drop=True) 

 

gpu_usage.style.background_gradient(axis=0,  cmap='Oranges') 

 

Out[33]: 

  Role Nbr of respondents % 

0 Machine Learning/ MLops Engineer 352 62.630000 

1 Data Scientist 811 42.390000 

2 Research Scientist 242 41.020000 

3 Data Engineer 119 34.900000 

4 Data Architect 33 34.740000 

5 Manager (Program, Project, Operations, Executive-level, etc) 277 33.540000 



   
 

6 Software Engineer 291 29.970000 

7 Developer Advocate 16 27.120000 

8 Teacher / professor 203 24.760000 

9 Engineer (non-software) 85 18.360000 

10 Data Analyst (Business, Marketing, Financial, Quantitative, etc) 264 17.450000 

11 Other 112 14.970000 

12 Data Administrator 10 14.290000 

13 Statistician 16 13.010000 

AI job roles and key skills needed to build a career in AI 

Whether the insights from the 2022 Kaggle Machine Learning & Data Science Survey illustrated in this 

notebook so far or the progress Artificial Intelligence and Machine Learning has made today excite you to 

get into the AI and Data Science world and build a career in AI, this section is the right place for you 

😀!!! In this part, I'll provide some insights about the different job roles and the top skills required, based 

on the responses of the professionals who participated in the survey. 



   
 

 



   
 

Photo by Ian Schneider on Unsplash 

As it has been seen in the above sections, a lot of companies across different industries are adopting AI 

solutions. Enterprises have also recognized the benefits of having an in-house team for data analytics. This 

has led to the rise of AI-related jobs. However, the different titles present in the market may confuse a 

newcomer. Different titles also require different specializations, which makes it difficult for an aspirant to 

choose the role they are equipped for and interested in. 

AI jobs description: roles, responsibilities and skills required 

So let's have first a look at the most in-demand AI jobs according to the survey respondents that already 

have a job position related to AI. 

unfold_lessHide code 

In [34]: 

data_science_roles = scope_df.groupby(["Q23"]).agg({"Q2" : 

"count"}).reset_index().rename(columns={"Q2": "counts"}) 

 

data_science_roles["relative_percent"] = data_science_roles.apply(lambda x : (x["counts"] / 

scope_df.shape[0]), axis = 1) 

data_science_roles = data_science_roles.sort_values(by=["relative_percent"], ascending=True) 

data_science_roles = data_science_roles[~data_science_roles["Q23"].isin(["None", "Other"])] 

 

 

create_single_bar_plot( 

    x_values=data_science_roles["relative_percent"].to_list(), 

    y_values=data_science_roles["Q23"].to_list(), 

    display_text=np.round((data_science_roles["relative_percent"] *100), decimals = 2), 

    top_n=2, 



   
 

    rest_n=data_science_roles.shape[0]-2,  

    hovertext = data_science_roles["counts"].to_list(), 

    title="Top AI Jobs in the Market", 

    subtitle="",  

    orientation="h" 

) 

 

0.65% 0.77% 1.04% 1.35% 3.75% 5.09% 6.18% 6.49% 9.02% 9.08% 10.68% 16.64% 21.04% 

0.0%5.0%10.0%15.0%20.0%Developer AdvocateData AdministratorData ArchitectStatisticianData 

EngineerEngineer (non-software)Machine Learning/ MLops EngineerResearch ScientistTeacher / 

professorManager (Program, Project, Operations, Executive-level, etc)Software EngineerData Analyst 

(Business, Marketing, Financial, Quantitative, etc)Data Scientist 

Top AI Jobs in the Market 

Unsurprisingly, the Data Scientists ranked first in the chart with the most common data-related jobs. With 

1,913 respondents they form 21.04% of our data professionals (9,094 in total), considerably ahead of Data 

Analysts in second place with 16.64%, followed by Software Engineers with 10.68%. 

But what industries are actually hiring AI specialists and what AI roles do they seek?? 

unfold_lessHide code 

In [35]: 

roles_df = scope_df.groupby(["Q24", "Q23"]).agg({"Q2" : 

"count"}).reset_index().rename(columns={"Q2": "counts"}) 

roles_df["relative_percent"] = roles_df.apply(lambda x : x["counts"] / industry_totals[x["Q24"]], axis = 1) 

 

create_scatter_plot( 

    roles_df["Q23"].apply(lambda x : x.split("(")[0]), 



   
 

    roles_df["Q24"],  

     "Role: %{x}<br>" + 

        "Industry: %{y}<br>" + 

        "Percentage: %{marker.size:,}" + 

        "<extra></extra>", 

    roles_df['relative_percent']*100,  

    roles_df['relative_percent']*100,  

    "What Industries are Hiring the Most AI Technology Specialists?", 

    "Questions Data: Industry (Q24) and Job Role (Q23)", 

    "Size,Color: Percentage of Respondents - <br>The number of respondents with the relevant job position 

in the related sector<br>divided by the total number of respondents working in that sector." 

) 

 

Data AdministratorData Analyst Data ArchitectData EngineerData ScientistDeveloper AdvocateEngineer 

Machine Learning/ MLops EngineerManager OtherResearch ScientistSoftware 

EngineerStatisticianTeacher / 

professorAcademics/EducationAccounting/FinanceBroadcasting/CommunicationsComputers/Technology

Energy/MiningGovernment/Public ServiceInsurance/Risk 

AssessmentManufacturing/FabricationMarketing/CRMMedical/PharmaceuticalNon-profit/ServiceOnline 

Service/Internet-based ServicesOtherRetail/SalesShipping/Transportation 

51015202530354045PercentWhat Industries are Hiring the Most AI Technology Specialists?Questions 

Data: Industry (Q24) and Job Role (Q23)Size,Color: Percentage of Respondents - The number of 

respondents with the relevant job position in the related sectordivided by the total number of respondents 

working in that sector. 

The scatter plot shows that 37.10% of employees in Insurance companies are Data Scientists, making 

them top the list of industries hiring Data Scientists. Data science can enable insurers to develop effective 



   
 

strategies to acquire new customers, develop personalized products, analyze risks, assist underwriters, 

implement fraud detection systems, and much more. 

Second in the list with the sectors that occupy the most data scientists proportionally with the total number 

of respondents working in that sector is the Marketing and CRM companies, followed by the Retail/Sales 

field and the companies offering Internet-based services. A wider range of information is available to 

these companies, therefore Data science helps them to put these data to efficient use to drive more business 

and refine their products/services offerings. These sectors as it can be seen also seek Data Analysts. 

Now, let's focus on the Data Scientists and Data Analysts since they are the most popular job roles as 

well as on the Machine Learning Engineers and Research Scientists who are core components of the AI 

& Data Science teams, and see how a typical day at work looks like. Let's see the main tasks and the 

responsibilities that they have. 

Note: In order to create the following chart, for each activity, I counted the number of respondents (Data 

Scientists, Analysts, ML engineers) who chose it and I calculated the percentages of each activity that you 

see below based on their total sum. 

unfold_lessHide code 

In [36]: 

dfs_list = [] 

ml_scope_df = scope_df[ 

    (scope_df["Q23"].isin(["Machine Learning/ MLops Engineer", "Data Scientist"])) | 

    (scope_df["Q23"].str.contains("Data Analyst")) 

] 

 

for col in [column for column in df.columns if column.startswith("Q28")]: 

    dfs_list.append(ml_scope_df.groupby([col]).agg({"Q2" : 

"count"}).reset_index().rename(columns={"Q2": "counts", col: "ML Activities"})) 

     

ml_activities = pd.concat(dfs_list) 



   
 

ml_activities["relative_percent"] = ml_activities.apply(lambda x : x["counts"] / 

ml_activities["counts"].sum(), axis = 1) 

 

 

ml_activities = ml_activities.sort_values(by=["relative_percent"], ascending=False) 

ml_activities = ml_activities[ 

    ~((ml_activities["ML Activities"].str.contains("None")) |  

    (ml_activities["ML Activities"].str.contains("Other"))) 

] 

 

 

map_ml_activities = { 

    "Analyze and understand data to influence product or business decisions": "Analyze and understand 

data<br>to influence product or business decisions" ,  

    "Build prototypes to explore applying machine learning to new areas": "Build prototypes to explore 

<br>applying machine learning to new areas", 

    "Build and/or run the data infrastructure that my business uses for storing, analyzing, and 

operationalizing data": "Build and/or run the data infrastructure",  

    "Experimentation and iteration to improve existing ML models": "Experimentation and iteration<br>to 

improve existing ML models", 

    "Build and/or run a machine learning service that operationally improves my product or workflows": 

"Build and/or run a machine learning service", 

    "Do research that advances the state of the art of machine learning": "Do research that advances 

the<br>state of the art of machine learning" 

 

} 

ml_activities["ML Activities"] = ml_activities["ML Activities"].apply(lambda x : map_ml_activities[x]) 



   
 

 

fig = go.Figure(go.Funnelarea( 

      values = ml_activities["counts"].to_list(), text = ml_activities["ML Activities"].to_list(), 

      marker = {"colors": ["#a43725","#c07156", "#E6b6a4", "#edc860", "#e5b01c", "#cfbd9b", "#a43725"], 

              }, 

      textfont = {"family": "Times New Roman", "size": 22, "color": "black"}, opacity = 0.65)) 

 

large_title_format = "<span style='font-size:30px; font-family:Times New Roman'>A Day in the Life of a 

Data Scientist / Analyst or ML Engineer</span>" 

 

 

layout = dict( 

    title = large_title_format, 

    font = dict(color = '#7b6b59'), 

    margin = dict(t=170), 

    width = 800, 

    height= 700, 

    plot_bgcolor = "white" 

) 

 

fig.update_layout(layout) 

fig.update_traces(showlegend=False) 

fig.show() 

 



   
 

Analyze and understand datato influence product or business decisions29.8%Build prototypes to explore 

applying machine learning to new areas18%Build and/or run the data infrastructure15.3%Experimentation 

and iterationto improve existing ML models14.9%Build and/or run a machine learning service14%Do 

research that advances thestate of the art of machine learning7.93% 

A Day in the Life of a Data Scientist / Analyst or ML Engineer 

The top level of the reversed pyramid represents the most common activity whereas going down we see the 

tasks, implemented less commonly. In addition to that, you can also see the most relevant activities per role 

in the illustrations below. 

Key insights: 

● So, 29.8% of the total activities that the respondents do is Analyze and understand data to 

influence product or business decisions. Data analysis dominates Data Scientists and Data 

Analysts' activities as is also illustrated in the following visualizations. The main task of those two 

roles is to analyze data to identify patterns and trends and extracts actionable insights for driving 

business decisions. 

● The second most common activity is to implement Machine Learning methods to explore new 

areas. In this task Machine Learning Engineers, Data Scientists, and Research Scientists are 

mainly involved. 

● In the third and fourth positions are the Experimentation and iteration to improve existing ML 

models and Build a machine learning service. Perhaps is not a surprise that Machine Learning 

Engineers are mainly responsible for these activities. 

● One less common activity is to Build and run data infrastructure where all 4 roles contribute 

almost equally. 

● Last but not least, is to Do research that advances the state of the art of machine learning 

which as it's expected undertaken mostly by Research Scientists. 

unfold_lessHide code 

In [37]: 

jobs_in_scope = [ 

    "Data Scientist", 

    "Data Analyst (Business, Marketing, Financial, Quantitative, etc)", 

    "Research Scientist", 



   
 

    "Machine Learning/ MLops Engineer" 

] 

activities = [col for col in df.columns if col.startswith("Q28")] 

job_roles = scope_df["Q23"].str.strip().value_counts().to_dict() 

dfs_list = [] 

for role in jobs_in_scope: 

    for col in activities: 

        roles_df = scope_df[ 

            scope_df["Q23"].str.strip() == role 

        ].groupby(["Q23", col]).agg({"Q2" : "count"}).reset_index().rename(columns={"Q2": "counts", col: 

"ML Activities"}) 

        dfs_list.append(roles_df) 

 

results = pd.concat(dfs_list) 

 

results["Q23"] = results["Q23"].str.strip() 

results["relative_percent"] = results.apply(lambda x : x["counts"] / job_roles[x["Q23"]], axis = 1) 

results = results[ 

    ~((results["ML Activities"].str.contains("None")) |  

    (results["ML Activities"].str.contains("Other"))) 

] 

 

 

map_ml_activities = { 



   
 

    "Analyze and understand data to influence product or business decisions": "1. Analyze and understand 

data<br><sup>to influence product or business decisions</sup>" ,  

    "Build prototypes to explore applying machine learning to new areas": "2. Build prototypes to explore 

<br><sup>applying machine learning to new areas</sup>", 

    "Build and/or run the data infrastructure that my business uses for storing, analyzing, and 

operationalizing data": "3. Build and/or run the data infrastructure</sup>",  

    "Experimentation and iteration to improve existing ML models": "4. Experimentation and 

iteration<br><sup>to improve existing ML models</sup>", 

    "Build and/or run a machine learning service that operationally improves my product or workflows": "5. 

Build and/or run a machine learning service", 

    "Do research that advances the state of the art of machine learning": "6. Do research that advances 

<br><sup>the state of the art of machine learning</sup>" 

 

} 

results["ML Activities"] = results["ML Activities"].apply(lambda x : map_ml_activities[x]) 

 

results = results.sort_values(by=["ML Activities"], ascending=False) 

 

 

create_scatter_plot( 

    results["Q23"].apply(lambda x : x.split("(")[0]).to_list(),  

    results["ML Activities"].apply(lambda x : x.split("(")[0]), 

     "Role: %{x}<br>" + 

        "ML Activity: %{y}<br>" + 

        "Percentage: %{marker.size:,}" + 

        "<extra></extra>", 

    results['relative_percent']*100,  



   
 

    results['relative_percent']*100,  

    "Tasks among ML and Data Science Roles", 

    "Questions Data: ML Activity (Q28) and Job Role (Q23)", 

    "Size,Color: Percentage of Respondents - <br>The number of respondents with the relevant job position 

doing the respective ML activity<br>divided by the total number of respondents with the same job 

position." 

) 

 

Machine Learning/ MLops EngineerResearch ScientistData ScientistData Analyst 6. Do research that 

advances the state of the art of machine learning5. Build and/or run a machine learning service4. 

Experimentation and iterationto improve existing ML models3. Build and/or run the data infrastructure2. 

Build prototypes to explore applying machine learning to new areas1. Analyze and understand datato 

influence product or business decisions 

10203040506070PercentTasks among ML and Data Science RolesQuestions Data: ML Activity (Q28) and 

Job Role (Q23)Size,Color: Percentage of Respondents - The number of respondents with the relevant job 

position doing the respective ML activitydivided by the total number of respondents with the same job 

position. 

unfold_lessHide code 

In [38]: 

jobs_in_scope = [ 

    "Data Scientist", 

    "Data Analyst (Business, Marketing, Financial, Quantitative, etc)", 

    "Research Scientist", 

    "Machine Learning/ MLops Engineer" 

] 

 



   
 

tasks_in_scope = [ 

    "Q28_1", 

    "Q28_2", 

    "Q28_3", 

    "Q28_4", 

    "Q28_5", 

    "Q28_6", 

] 

 

label = [ 

    "Data Scientist", #0 

    "Data Analyst", #1 

    "Research Scientist", #2 

    "Machine Learning Engineer", #3 

    'Analyze and Understand Data', #4 

    'Build and run data infrastructure', #5 

    'Create ML to explore new areas', #6 

    'Build and run ML',  #7 

    'Improve ML Models', #8 

    'Research to advance the state of ML' #9 

     

] 

 

source = [0,0,0,0,0,0, 1,1,1,1,1,1,   2,2,2,2,2,2, 3,3,3,3,3,3] 



   
 

target = [4,5,6,7,8,9,  4,5,6,7,8,9, 4,5,6,7,8,9, 4,5,6,7,8,9,] 

value = [] 

for job in jobs_in_scope: 

    for col in tasks_in_scope: 

 

        value.append(scope_df[scope_df["Q23"] == job ][col].count()) 

         

# Colors 

color_node = [ 

    "#CC5600",  

    "#9D4800",  

    "#91281A",  

    "#DA9300", 

    "#325C6E", 

    "#325C6E", 

    "#325C6E", 

    "#325C6E",  

    "#325C6E",  

    "#325C6E", 

    "#325C6E" 

] 

 

color_link = ["#F8E8DC","#CC5600", "#F8E8DC", "#F8E8DC", "#CC5600", 

              "#EBD5C3","#EBD5C3", "#9D4800", "#EBD5C3", "#9D4800", 



   
 

              "#DDCECC", "#DDCECC", "#91281A", "#DDCECC", "#91281A", 

              "#F8EED9", "#DA9300", "#F8EED9", "#F8EED9", "#DA9300"] 

 

 

color_link = ["#CC5600", "#F8E8DC", "#CC5600", "#F8E8DC", "#F8E8DC", "#F8E8DC", 

              "#9D4800", "#9D4800", "#EBD5C3", "#EBD5C3","#EBD5C3","#EBD5C3",  

              "#91281A", "#DDCECC", "#91281A", "#DDCECC", "#DDCECC", "#DDCECC", 

              "#F8EED9", "#F8EED9", "#DA9300", "#F8EED9", "#DA9300", "#F8EED9", 

            ] 

 

fig = go.Figure(data=[go.Sankey( 

    node = dict( 

      pad = 10, 

      thickness = 21, 

      line = dict(color = "black", width = 0.5), 

      label = label, 

      color=color_node, 

         

         

    ), 

    link = dict( 

      source = source, # indices correspond to labels, eg A1, A2, A1, B1, ... 

      target = target, 

      value = value, 



   
 

        color = color_link 

  ), arrangement='snap')]) 

 

# title format 

large_title_format = "<span style='font-size:30px; font-family:Times New Roman'>Tasks among ML and 

Data Science Roles</span>" 

 

layout = dict( 

    #title = large_title_format, 

    font = dict(color = '#7b6b59'), 

 

) 

 

fig.update_layout(layout) 

fig.show() 

 

Data ScientistData AnalystResearch ScientistMachine Learning EngineerAnalyze and Understand 

DataBuild and run data infrastructureCreate ML to explore new areasBuild and run MLImprove ML 

ModelsResearch to advance the state of ML 

unfold_lessHide code 

In [39]: 

jobs_in_scope = [ 

    "Data Scientist", 

    "Data Analyst (Business, Marketing, Financial, Quantitative, etc)", 



   
 

    "Research Scientist", 

    "Machine Learning/ MLops Engineer" 

] 

 

models_in_scope = [ 

    "Models in Production", 

    "Not Started", 

    "Exploration Stage", 

    "Generating Insights" 

 

] 

tasks_in_scope = [ 

    "Q28_1", 

    "Q28_2", 

    "Q28_3", 

    "Q28_4", 

    "Q28_5", 

    "Q28_6", 

] 

 

label = [ 

    "Data Scientist", #0 

    "Data Analyst", #1 

    "Research Scientist", #2 



   
 

    "Machine Learning Engineer", #3 

    "Models in Production", #4 

    "Not Started", #5 

    "Exploration Stage", #6 

    "Generating Insights", #7 

    'Analyze and Understand Data', #8 

    'Build and run data infrastructure', #9 

    'Create ML to explore new areas', #10 

    'Build and run ML', #11 

    'Improve ML Models', #12  

    'Research to advance the state of ML' #13 

     

] 

source = [0, 0, 0, 0, 4,4,4,4,4,4, 5,5,5,5,5,5, 6,6,6,6,6,6, 7,7,7,7,7,7,   

         1, 1, 1, 1, 4,4,4,4,4,4, 5,5,5,5,5,5, 6,6,6,6,6,6, 7,7,7,7,7,7, 

            2, 2, 2, 2, 4,4,4,4,4,4, 5,5,5,5,5,5, 6,6,6,6,6,6, 7,7,7,7,7,7, 

          3,3,3,3, 4,4,4,4,4,4, 5,5,5,5,5,5, 6,6,6,6,6,6, 7,7,7,7,7,7, 

         ] 

target = [4, 5, 6, 7,  8,9,10,11,12,13, 8,9,10,11,12,13, 8,9,10,11,12,13, 8,9,10,11,12,13,  

          4, 5, 6, 7,  8,9,10,11,12,13, 8,9,10,11,12,13, 8,9,10,11,12,13, 8,9,10,11,12,13,  

          4, 5, 6, 7,  8,9,10,11,12,13, 8,9,10,11,12,13, 8,9,10,11,12,13, 8,9,10,11,12,13,  

          4, 5, 6, 7,  8,9,10,11,12,13, 8,9,10,11,12,13, 8,9,10,11,12,13, 8,9,10,11,12,13, ] 

value = [] 

for job in jobs_in_scope: 



   
 

    for model in models_in_scope: 

        value.append( 

            scope_df[ 

                (scope_df["Q23"] == job) & 

                (scope_df["ML_adoption_class"] == model) 

            ].shape[0]) 

    for model in models_in_scope: 

        for col in tasks_in_scope: 

         

            value.append( 

               scope_df[ 

                (scope_df["Q23"] == job) & 

                (scope_df["ML_adoption_class"] == model) 

            ][col].count()) 

         

 

         

# Colors 

color_node = ["#CC5600", "#9D4800",  "#91281A", "#DA9300"] + ["#c07156"]*4 + ["#325C6E"]*6  

 

 

color_link = ["#DDCECC"]*4 + ["#89CFF0"]*24 +["#DA9300"]*4 +["pink"]*24 + ["#FAC898"] * 4 + 

["pink"]*24 + ["#F8EED9"] * 4 + ["pink"]*24  

  

fig = go.Figure(data=[go.Sankey( 



   
 

    node = dict( 

      pad = 15, 

      thickness = 20, 

      line = dict(color = "black", width = 0.5), 

      label = label, 

     color=color_node, 

         

         

    ), 

    link = dict( 

      source = source, # indices correspond to labels, eg A1, A2, A1, B1, ... 

      target = target, 

      value = value, 

       # color = color_link 

  ))]) 

 

 

# title format 

large_title_format = "<span style='font-size:30px; font-family:Times New Roman'>Tasks among ML and 

Data Science Roles</span>" 

 

layout = dict( 

     

    font = dict(color = '#7b6b59'), 

 



   
 

) 

 

fig.update_layout(layout) 

fig.show() 

 

Data ScientistData AnalystResearch ScientistMachine Learning EngineerModels in ProductionNot 

StartedExploration StageGenerating InsightsAnalyze and Understand DataBuild and run data 

infrastructureCreate ML to explore new areasBuild and run MLImprove ML ModelsResearch to advance 

the state of ML 

unfold_lessHide code 

In [40]: 

years_ml_in_scope = list(map_ml_experience.values())[0:-1] 

years_ml_in_scope = years_ml_in_scope[0:-1] 

 

ml_activities = [col for col in scope_df.columns if col.startswith("Q28")] 

# Exclude None and others 

ml_activities = ml_activities[:-2] 

 

ml_activities.reverse() 

x = years_ml_in_scope 

y = ['Do research that advances <br> the state of the art of machine learning', 

 'Experimentation and iteration<br> to improve existing ML models', 

 'Build and/or run a machine learning <br>service that operationally improves my product or workflows', 

 'Build prototypes to explore <br>applying machine learning to new areas', 



   
 

 'Build and/or run the data infrastructure that my<br> business uses for storing, analyzing, and 

operationalizing data', 

 'Analyze and understand data to <br>influence product or business decisions'] 

 

z = [] 

 

for activity in ml_activities: 

    tmp = [] 

    for years in years_ml_in_scope: 

        tmp.append(round((scope_df[scope_df["Q16"] == years][activity].count() / 

scope_df[scope_df["Q16"] == years].shape[0]),2))  

    z.append(tmp) 

 

create_heatmap(z, x, y, z, "YlOrBr", "ML Experience in different responsibilities", subtitle="This helps us 

understand the level of ML experience needed to perform an activity.") 

 

1. 0 years2. < 1 years3. 1-2 years4. 2-3 years5. 3-4 years6. 4-5 years7. 5-10 years8. 10-20 yearsDo research 

that advances the state of the art of machine learning Experimentation and iteration to improve existing 

ML models Build and/or run a machine learning service that operationally improves my product or 

workflows Build prototypes to explore applying machine learning to new areas Build and/or run the data 

infrastructure that my business uses for storing, analyzing, and operationalizing data Analyze and 

understand data to influence product or business decisions 

ML Experience in different responsibilitiesThis helps us understand the level of ML experience needed to 

perform an 

activity.0.050.110.190.220.270.290.320.430.040.120.230.310.440.470.560.570.050.110.250.310.40.410.4

70.420.070.170.330.460.530.580.670.650.230.220.330.350.340.370.390.360.50.480.570.590.610.610.650.

63 



   
 

The chart above shows the percentage of respondents at a particular Machine Learning experience level for 

each responsibility. This helps us understand the level of ML expertise needed to perform a task. 

The main key takeaways are: 

● Data Analysis activities show higher percentages of individuals with ML experience of 2-3 years 

or more. 

● Machine learning-related tasks such as Applying ML methods to new areas and improving 

existing ML models have greater percentages at the higher experience ranges. 

Below you can see the distribution of the years of coding experience and experience using ML methods. 

While a big group of respondents has many years of coding they don't have many years experience in 

using Machine Learning methods. 

unfold_lessHide code 

In [41]: 

programming_experience_df = scope_df.groupby(["Q11"]).agg({"Q2" : 

"count"}).reset_index().rename(columns={"Q2": "counts"}) 

programming_experience_df["relative_percent"] = programming_experience_df.apply(lambda x : 

x["counts"] / scope_df.shape[0], axis = 1) 

programming_experience_df = programming_experience_df.sort_values(by=["Q11"]) 

programming_experience_df["Q11"] = programming_experience_df["Q11"].apply(lambda x : x.split(".")[-

1]) 

 

 

ml_experience_df = scope_df.groupby(["Q16"]).agg({"Q2" : 

"count"}).reset_index().rename(columns={"Q2": "counts"}) 

ml_experience_df["relative_percent"] = ml_experience_df.apply(lambda x : x["counts"] / 

scope_df.shape[0], axis = 1) 

ml_experience_df = ml_experience_df.sort_values(by=["Q16"]) 

ml_experience_df["Q16"] = ml_experience_df["Q16"].apply(lambda x : x.split(".")[-1]) 



   
 

 

 

traces = dict() 

 

# Creating the bar chart 

trace_experience_coding = get_bar_plot_trace( 

    programming_experience_df["Q11"].to_list(), 

    programming_experience_df["relative_percent"].to_list(), 

    np.round((programming_experience_df["relative_percent"] *100), decimals = 2), 

    0,  

    programming_experience_df.shape[0]-0,  

    programming_experience_df["counts"].to_list(), 

    orientation="v" 

)  

 

trace_experience_ml = get_bar_plot_trace( 

    ml_experience_df["Q16"].apply(lambda x : x.split("(")[0]), 

    ml_experience_df["relative_percent"].to_list(), 

    np.round((ml_experience_df["relative_percent"] *100), decimals = 2), 

    0,  

    ml_experience_df.shape[0]-0,  

    ml_experience_df["counts"].to_list(), 

    orientation="v" 

)  



   
 

 

 

 

fig = make_subplots( 

    rows=1,  

    cols=2 , 

    shared_yaxes=False,  

    shared_xaxes=True,  

    horizontal_spacing = 0.20,  

    vertical_spacing = 0.10, 

    subplot_titles=("Years of Coding Experience", "Years of using ML Methods") 

) 

traces["Programming_Experience"] = trace_experience_coding 

traces["ML_experience"] = trace_experience_ml 

 

 

 

fig.append_trace(traces["Programming_Experience"],1,1) 

fig.append_trace(traces["ML_experience"],1,2)             

 

large_title_format = "<span style='font-size:30px; font-family:Times New Roman'>Professional 

subgroups</span>" 

small_title_format = "<span style='font-size:14px; font-family:Helvetica'>Python Is Essential for Data 

Analysis and Data Science.</b></span>" 

 



   
 

 

layout = dict( 

    title = large_title_format + "<br>" + small_title_format, 

    font = dict(color = '#7b6b59'), 

    showlegend = False, 

    margin = dict(t=150,pad=6), 

    plot_bgcolor='#fff', 

    bargap = 0.10, 

) 

 

fig['layout'].update(layout) 

 

fig.show() 

 

programming_experience = list(map_programming_experience.values())[1:-1] 

programming_experience.reverse() 

ml_experience = list(map_ml_experience.values())[0:-1] 

 

z = [] 

z_text = [] 

 

 

for coding in programming_experience: 

    tmp = [] 



   
 

    tmp_text = [] 

    for ml in ml_experience: 

         

        tmp.append((scope_df[(scope_df["Q16"] == ml) & (scope_df["Q11"] == coding)].shape[0]))  

        num = (scope_df[(scope_df["Q16"] == ml) & (scope_df["Q11"] == coding)].shape[0]) 

        if coding in ["2. < 1 years" , "3. 1-3 years"] and ml in ["1. 0 years", "2. < 1 years"]: 

            tmp_text.append(f"<b>Begginers</b><br><br>{num}") 

        elif coding in ["4. 3-5 years" , "5. 5-10 years"] and ml in ["2. < 1 years", "3. 1-2 years", "4. 2-3 

years",]: 

            tmp_text.append(f"<b>Mid Level</b><br><br>{num}") 

        elif coding in ["6. 10-20 years" , "7. 20+ years"] and ml in ["1. 0 years", "2. < 1 years",]: 

            tmp_text.append(f"In<br>Transition<br>{num}") 

        elif coding in ["6. 10-20 years" , "7. 20+ years"] and ml in ["7. 5-10 years", "8. 10-20 years",]: 

            tmp_text.append(f"<b>ML Experts</b><br>{num}") 

        else: 

            tmp_text.append(num) 

      

     

    z_text.append(tmp_text) 

    z.append(tmp) 

 

programming_experience = [item.split(".")[-1] for item in programming_experience] 

ml_experience = [item.split(".")[-1] for item in ml_experience] 

 



   
 

create_heatmap(z, ml_experience, programming_experience, z_text, "Oranges", "ML Experience in 

different responsibilities", subtitle="",  

              xlabel="Experience in using Machine Learning", ylabel="Programming Experience") 

 

8.63% 14.35% 18.51% 14.9% 16.78% 14.08% 12.76% 0 years < 1 years 1-3 years 3-5 years 5-10 years 

10-20 years 20+ years00.050.10.1513.61% 21.46% 15.6% 11.61% 7.22% 7.59% 9.82% 4.44% 0 years < 1 

years 1-2 years 2-3 years 3-4 years 4-5 years 5-10 years 10-20 years00.050.10.150.2 

Professional subgroupsPython Is Essential for Data Analysis and Data Science.Years of Coding 

ExperienceYears of using ML Methods 

0 years < 1 years 1-2 years 2-3 years 3-4 years 4-5 years 5-10 years 10-20 years 20+ years 20+ years 10-20 

years 5-10 years 3-5 years 1-3 years < 1 years 

ML Experience in different responsibilitiesExperience in using Machine LearningProgramming 

ExperienceInTransition86InTransition11912611790136ML Experts224ML 

Experts2620InTransition126InTransition162167147115130ML Experts320ML Experts1130149Mid 

Level184Mid Level188Mid Level223180270314180144Mid Level241Mid Level278Mid 

Level2912311362770Begginers247Begginers5265842663814710Begginers486Begginers720761234130 

In the figure above we can also see a categorization of the professionals: 

● The first group is the Beginners - Juniors. They have less than 3 years of experience in both 

coding and ML methods and they make up around 21.8% of all the professionals who participated 

in the survey. 

● The second group are Coders in transition (5.4%). Those people have decades-long coding 

experience for working with data, however, they have started working with machine learning only 

recently. These may be for example software engineers transitioning into data engineers or 

Machine Learning Engineers. 

● The third category in the lower right corner is the Machine Learning Experts (~10%). Those 

people have been coding since long before the current AI revolution - with 10 or even over 20 

years of both ML and coding experience, they may have started to specialize in the topic around 

the 2000s or even late 1990s. These people were doing machine learning before it was hype. 

● The last group is the Mid Level Data Scientists or ML Engineers (~15.4%) with a solid 

understanding of ML concepts and a strong coding background. 



   
 

So, to help you get your dream job in the AI and Data Science field, especially if you belong to the 

Beginners or Coders in Transition group I analyze below the top skills required for working with data and 

Machine Learning. 

unfold_lessHide code 

In [42]: 

languages_columns = [col for col in scope_df.columns if col.startswith("Q12")] 

languages_columns = languages_columns[0:len(languages_columns)-2] 

x = list(scope_df[scope_df["Q23"] != "Other"]["Q23"].apply(lambda x : x.split("(")[0]).unique()) 

y = [] 

for col in languages_columns: 

    y.append(scope_df[col].value_counts().index[0]) 

 

z = [] 

 

     

for col in languages_columns: 

    tmp = [] 

    for role in list(scope_df[scope_df["Q23"] != "Other"]["Q23"].unique()) : 

        if len(scope_df[scope_df["Q23"] == role][col].value_counts().values) > 0: 

            languages_usage = scope_df[scope_df["Q23"] == role][col].value_counts().values[0] 

        else: 

            languages_usage = 0.00 

        tmp.append(round(( languages_usage / scope_df[scope_df["Q23"] == role].shape[0]),2))  

     



   
 

    z.append(tmp) 

 

fig = go.Figure(data=go.Heatmap( 

                   z=z, 

                   x=x, 

                   y=y, 

    colorscale='YlorBr', 

                   )) 

 

large_title_format = "<span style='font-size:30px; font-family:Times New Roman'>Essential Programming 

Languages per Role</span>" 

 

layout = dict( 

    title = large_title_format, 

    font = dict(color = '#7b6b59'), 

 

) 

 

 

fig['layout'].update(layout) 

fig.update_traces(text=z, texttemplate="%{text}") 

 

fig.show() 

 



   
 

0.940.80.840.780.740.90.980.670.760.620.730.570.860.280.080.290.140.240.160.10.110.270.530.230.210

.160.590.540.220.420.590.740.40.270.30.370.460.560.730.070.180.180.190.050.110.10.080.290.070.110.
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120.060.140.090.310.10.360.060.180.140.070.210.040.130.10.320.10.40.10.360.090.180.170.070.160.060

.160.160.280.130.150.160.150.040.230.260.050.050.040.10.070.190.030.110.050.190.040.060.040.020.10

.030.070.090.110.070.050.230.050.050.060.090.140.230.10.050.010.050.020.010.050.030.010.010.020.01

0.020.020.0100.050.010.060.010.030.010.030.0300.010.010.0200.08Data ScientistSoftware 

EngineerResearch ScientistDeveloper AdvocateData Analyst Data EngineerMachine Learning/ MLops 

EngineerEngineer Teacher / professorStatisticianManager Data AdministratorData 

ArchitectPythonRSQLCC#C++JavaJavascriptBashPHPMATLABJuliaGo 

00.20.40.60.8Essential Programming Languages per Role 

Regarding the most important programming language that you need to know, it's pretty obvious that is 

Python. You can see in the table above that Python is required for each role, along with SQL most of the 

time. Statisticians should also have R knowledge while Software Engineers and Developers might also 

work with Java and Javascript. 

If you are thinking to become a Machine Learning Engineer, a Data Architect, or a Data Scientist then it 

would be beneficial to get familiarized with Cloud technologies since these roles require working with 

cloud computing platforms and other cloud services. 

unfold_lessHide code 

In [43]: 

cloud_usage = scope_df.groupby(["Q23", "Cloud_usage"]).agg({"Q2" : 

"count"}).reset_index().rename(columns={"Q2": "counts"}) 

 

top_labels = ['Yes', 'No'] 

colors = ['#a43725', '#cfbd9b'] 

 

x_data = [] 

 



   
 

for role in list(scope_df["Q23"].unique()): 

    yes = cloud_usage[ 

        (cloud_usage["Q23"] == role) & 

        (cloud_usage["Cloud_usage"] == "Yes") 

    ].iloc[0]['counts'] 

    no = cloud_usage[ 

        (cloud_usage["Q23"] == role) & 

        (cloud_usage["Cloud_usage"] == "No") 

    ].iloc[0]['counts'] 

    sum_total = yes + no  

    x_data.append([round( (yes /sum_total) * 100, 2), round( (no /sum_total) * 100, 2) ]) 

 

y_data = list(scope_df["Q23"].apply(lambda x : x.split("(")[0]).unique()) 

 

fig = go.Figure() 

 

for i in range(0, len(x_data[0])): 

    for xd, yd in zip(x_data, y_data): 

        fig.add_trace(go.Bar( 

            x=[xd[i]], y=[yd], 

            orientation='h', 

            marker=dict( 

                color=colors[i], 

                line=dict(color='rgb(248, 248, 249)', width=1) 



   
 

            ) 

        )) 

 

 

         

large_title_format = "<span style='font-size:30px; font-family:Times New Roman'>Cloud Usage by 

Role</span>" 

small_title_format = "<span style='font-size:14px; font-family:Helvetica'></b></span>" 

 

 

fig.update_layout( 

    xaxis=dict( 

        showgrid=False, 

        showline=False, 

        showticklabels=False, 

        zeroline=False, 

        domain=[0.15, 1] 

    ), 

    yaxis=dict( 

        showgrid=False, 

        showline=False, 

        showticklabels=False, 

        zeroline=False, 

    ), 

    title = large_title_format + "<br>" + small_title_format, 



   
 

    font = dict(color = '#7b6b59'), 

    barmode='stack', 

    paper_bgcolor='white', 

    plot_bgcolor='white', 

    margin=dict(l=120, r=10, t=140, b=80), 

    showlegend=False, 

) 

 

annotations = [] 

 

for yd, xd in zip(y_data, x_data): 

    # labeling the y-axis 

    annotations.append(dict(xref='paper', yref='y', 

                            x=0.14, y=yd, 

                            xanchor='right', 

                            text=str(yd), 

                            font=dict(family='Arial', size=14, 

                                      color='rgb(67, 67, 67)'), 

                            showarrow=False, align='right')) 

    # labeling the first percentage of each bar (x_axis) 

    annotations.append(dict(xref='x', yref='y', 

                            x=xd[0] / 2, y=yd, 

                            text=str(xd[0]) + '%', 

                            font=dict(family='Arial', size=14, 



   
 

                                      color='rgb(248, 248, 255)'), 

                            showarrow=False)) 

    # labeling the first Likert scale (on the top) 

    if yd == y_data[-1]: 

        annotations.append(dict(xref='x', yref='paper', 

                                x=xd[0] / 2, y=1.1, 

                                text=top_labels[0], 

                                font=dict(family='Arial', size=14, 

                                          color='rgb(67, 67, 67)'), 

                                showarrow=False)) 

    space = xd[0] 

    for i in range(1, len(xd)): 

            # labeling the rest of percentages for each bar (x_axis) 

            annotations.append(dict(xref='x', yref='y', 

                                    x=space + (xd[i]/2), y=yd, 

                                    text=str(xd[i]) + '%', 

                                    font=dict(family='Arial', size=14, 

                                              color='rgb(248, 248, 255)'), 

                                    showarrow=False)) 

            # labeling the Likert scale 

            if yd == y_data[-1]: 

                annotations.append(dict(xref='x', yref='paper', 

                                        x=space + (xd[i]/2), y=1.1, 

                                        text=top_labels[i], 



   
 

                                        font=dict(family='Arial', size=14, 

                                                  color='rgb(67, 67, 67)'), 

                                        showarrow=False)) 

            space += xd[i] 

 

fig.update_layout(annotations=annotations) 

 

fig.show() 

 

Cloud Usage by RoleData Scientist57.5%42.5%Software Engineer42.84%57.16%Research 

Scientist43.39%56.61%Other24.6%75.4%Developer Advocate44.07%55.93%Data Analyst 

37.87%62.13%Data Engineer56.3%43.7%Machine Learning/ MLops Engineer67.79%32.21%Engineer 

25.49%74.51%Teacher / professor36.59%63.41%Statistician28.46%71.54%Manager 52.18%47.82%Data 

Administrator37.14%62.86%Data Architect65.26%Yes34.74%No 

Since machine learning and AI jobs entail the development of algorithms, let's have a look at the ML 

algorithms that an aspiring professional should know. The ones that are common for every role but 

especially for Data Scientists are Linear or Logistic Regression and Decision Trees or Random Forests. 

Data Scientists should also be able to use Gradient Boosting Machines algorithms while Research 

Scientists and Machine Learning Engineers should have a solid understanding of Deep Neural Networks 

since they use Convolutional Neural Networks, MLPs, RNNs, and Transformers on a regular basis. 

unfold_lessHide code 

In [44]: 

roles_in_scope = [ 

    "Data Scientist", 

    "Data Analyst (Business, Marketing, Financial, Quantitative, etc)", 

    "Software Engineer", 



   
 

    "Research Scientist", 

    "Machine Learning/ MLops Engineer", 

    "Data Engineer", 

    "Statistician", 

    "Data Architect"  

] 

 

ml_algorithms = [col for col in scope_df.columns if col.startswith("Q18")] 

# Exclude None and others 

ml_algorithms = ml_algorithms[:-2] 

ml_algorithms_values = [scope_df[col].value_counts().index.to_list()[0].strip() for col in ml_algorithms] 

 

x = [ 

    "Data Scientist", 

    "Data Analyst", 

    "Software Engineer", 

    "Research Scientist", 

    "Machine Learning/ MLops Engineer", 

    "Data Engineer", 

    "Statistician", 

    "Data Architect"  

] 

y = ml_algorithms_values 

 



   
 

z = [] 

 

for alogithm in ml_algorithms: 

    tmp = [] 

    for role in roles_in_scope: 

        tmp.append(round((scope_df[scope_df["Q23"] == role][alogithm].count() / 

scope_df[scope_df["Q23"] == role].shape[0]),2))  

     

    z.append(tmp) 

 

fig = ff.create_annotated_heatmap(z, x=x, y=y, annotation_text=z,  colorscale='Oranges') 

 

large_title_format = "<span style='font-size:30px; font-family:Times New Roman'> ML algorithms used 

on a regular basis by job role</span>" 

 

layout = dict( 

    title = large_title_format, 

    font = dict(color = '#7b6b59'), 

 

) 

 

 

fig['layout'].update(layout) 

fig["layout"]["xaxis"].update(side="bottom") 

fig.show() 



   
 

 

Data ScientistData AnalystSoftware EngineerResearch ScientistMachine Learning/ MLops EngineerData 

EngineerStatisticianData ArchitectLinear or Logistic Regression Decision Trees or Random Forests 

Gradient Boosting Machines (xgboost, lightgbm, etc) Bayesian Approaches Evolutionary Approaches 

Dense Neural Networks (MLPs, etc) Convolutional Neural Networks Generative Adversarial Networks 

Recurrent Neural Networks Transformer Networks (BERT, gpt-3, etc) Autoencoder Networks (DAE, 

VAE, etc) Graph Neural Networks 

ML algorithms used on a regular basis by job 

role0.760.490.50.590.640.610.620.610.710.390.390.470.550.50.460.540.590.210.240.320.480.320.240.31

0.270.110.150.270.220.180.220.210.060.020.040.090.060.030.040.030.250.070.160.30.410.130.080.120.3

50.130.320.470.630.290.110.380.060.020.060.110.140.040.030.080.240.080.160.240.330.150.110.190.22

0.050.110.20.360.090.050.130.10.010.050.170.180.040.040.050.080.040.050.130.10.080.030.05 

When it comes to the Machine Learning Frameworks Scikit-learn is a must-have for Data Scientists and 

Machine Learning Engineers while PyTorch, Tensorflow, and Keras are used a lot by Machine Learning 

Engineers, Research Scientists, Data Architects, and Data Scientists for research and production needs. 

unfold_lessHide code 

In [45]: 

roles_in_scope = [ 

    "Data Scientist", 

    "Data Analyst (Business, Marketing, Financial, Quantitative, etc)", 

    "Software Engineer", 

    "Research Scientist", 

    "Machine Learning/ MLops Engineer", 

    "Data Engineer", 

    "Statistician", 

    "Data Architect"  



   
 

] 

 

ml_frameworks = [col for col in scope_df.columns if col.startswith("Q17")] 

# Exclude None and others 

ml_frameworks = ml_frameworks[:-2] 

ml_frameworks_values = [scope_df[col].value_counts().index.to_list()[0].strip() for col in 

ml_frameworks] 

 

x = [ 

    "Data Scientist", 

    "Data Analyst", 

    "Software Engineer", 

    "Research Scientist", 

    "Machine Learning/ MLops Engineer", 

    "Data Engineer", 

    "Statistician", 

    "Data Architect"  

] 

y = ml_frameworks_values 

 

z = [] 

 

for framework in ml_frameworks: 

    tmp = [] 

    for role in roles_in_scope: 



   
 

        tmp.append(round((scope_df[scope_df["Q23"] == role][framework].count() / 

scope_df[scope_df["Q23"] == role].shape[0]),2))  

     

    z.append(tmp) 

 

fig = ff.create_annotated_heatmap(z, x=x, y=y, annotation_text=z,  colorscale='Oranges') 

 

large_title_format = "<span style='font-size:30px; font-family:Times New Roman'>ML Frameworks used 

on a regular basis by job role</span>" 

  

layout = dict( 

    title = large_title_format, 

    font = dict(color = '#7b6b59'), 

 

) 

 

 

fig['layout'].update(layout) 

fig["layout"]["xaxis"].update(side="bottom") 

 

fig.show() 

 

Data ScientistData AnalystSoftware EngineerResearch ScientistMachine Learning/ MLops EngineerData 

EngineerStatisticianData ArchitectScikit-learn TensorFlow Keras PyTorch Fast.ai Xgboost LightGBM 

CatBoost Caret Tidymodels JAX PyTorch Lightning Huggingface 



   
 

ML Frameworks used on a regular basis by job 

role0.820.460.530.620.780.610.380.530.470.240.410.450.620.40.20.450.430.190.330.380.560.30.160.350.

340.140.270.410.570.270.130.380.050.010.040.040.10.040.020.040.50.180.190.240.430.280.190.280.270.

070.080.120.220.140.110.070.150.030.040.060.140.080.070.050.090.040.020.070.040.030.130.040.060.0

30.010.050.010.010.070.050.010.00.010.030.040.010.020.010.070.020.050.080.150.040.020.120.170.020.

070.110.270.070.030.05 

Data science team sizing 

Here I look at the relationship between company and Data Science team size. It seems that larger 

companies have bigger data science teams. 

unfold_lessHide code 

In [46]: 

company_size_df = scope_df.groupby(["Q25"]).agg({"Q2" : 

"count"}).reset_index().rename(columns={"Q2": "counts"}) 

company_size_df["relative_percent"] = company_size_df.apply(lambda x : x["counts"] / 

scope_df.shape[0], axis = 1) 

company_size_df = company_size_df.sort_values(by=["Q25"]) 

company_size_df["Q25"] = company_size_df["Q25"].apply(lambda x : x.split(".")[-1]) 

 

 

data_team_size_df = scope_df.groupby(["Q26"]).agg({"Q2" : 

"count"}).reset_index().rename(columns={"Q2": "counts"}) 

data_team_size_df["relative_percent"] = data_team_size_df.apply(lambda x : x["counts"] / 

scope_df.shape[0], axis = 1) 

data_team_size_df = data_team_size_df.sort_values(by=["Q26"]) 

data_team_size_df["Q26"] = data_team_size_df["Q26"].apply(lambda x : x.split(".")[-1]) 

 



   
 

 

traces = dict() 

 

# Creating the bar chart 

trace_company_size = get_bar_plot_trace( 

    company_size_df["Q25"].to_list(), 

    company_size_df["relative_percent"].to_list(), 

    np.round((company_size_df["relative_percent"] *100), decimals = 2), 

    0,  

    company_size_df.shape[0]-0,  

    company_size_df["counts"].to_list(), 

    orientation="v" 

)  

 

trace_team_size = get_bar_plot_trace( 

    data_team_size_df["Q26"].apply(lambda x : x.split("(")[0]), 

    data_team_size_df["relative_percent"].to_list(), 

    np.round((data_team_size_df["relative_percent"] *100), decimals = 2), 

    0,  

    data_team_size_df.shape[0]-0,  

    data_team_size_df["counts"].to_list(), 

    orientation="v" 

)  

 



   
 

 

fig = make_subplots( 

    rows=1,  

    cols=2 , 

    shared_yaxes=False,  

    shared_xaxes=True,  

    horizontal_spacing = 0.20,  

    vertical_spacing = 0.10, 

    subplot_titles=("Company Size", "Data Science Team Size") 

) 

traces["company_size"] = trace_company_size 

traces["team_size"] = trace_team_size 

 

fig.append_trace(traces["company_size"],1,1) 

fig.append_trace(traces["team_size"],1,2)             

 

large_title_format = "<span style='font-size:30px; font-family:Times New Roman'>Company and DS 

Team Size</span>" 

 

layout = dict( 

    title = large_title_format + "<br>", 

    font = dict(color = '#7b6b59'), 

    showlegend = False, 

    margin = dict(t=150,pad=6), 

    plot_bgcolor='#fff', 



   
 

    bargap = 0.10, 

) 

 

fig['layout'].update(layout) 

 

fig.show() 

 

data_teams = [item for item in map_data_team_size.values() if not pd.isnull(item)] 

company_size = [item for item in map_company_size.values() if not pd.isnull(item)] 

 

z = [] 

 

for team in data_teams: 

    tmp = [] 

 

    for company in company_size: 

         

        tmp.append((scope_df[(scope_df["Q25"] == company) & (scope_df["Q26"] == team)].shape[0]))  

            

    z.append(tmp) 

 

 

y = [item.split(".")[-1] for item in map_data_team_size.values() if not pd.isnull(item)] 

 



   
 

test = ['0-49 employees', 

 '50-249 employees', 

 '250-999 employees', 

 '1000-9,999 employees', 

 '10,000 or more employees'] 

 

 

fig1 = ff.create_annotated_heatmap(z, x=test, y=y, colorscale='Oranges') 

layout = go.Layout( 

    xaxis= {"title": "Company Size (employees)"}, 

    yaxis= {"title": "Data Science Team Size"}, 

    font = dict(color = '#7b6b59'), 

    

) 

 

fig1.update_layout(layout) 

fig1.show() 

 

23.42% 17.2% 14.98% 20.76% 23.33% 0-49 employees 50-249 employees 250-999 employees 1000-

9,999 employees 10,000 or more employees00.050.10.150.216.02% 19.96% 15.31% 12.55% 7.18% 2.88% 

24.96% 0 1-2 3-4 5-9 10-14 15-19 20+00.050.10.150.20.25 

Company and DS Team SizeCompany SizeData Science Team Size 

0-49 employees50-249 employees250-999 employees1000-9,999 employees10,000 or more employees 0 

1-2 3-4 5-9 10-14 15-19 20+ 



   
 

Company Size (employees)Data Science Team 

Size5612631922162258503922082081573913442542551481892622512611786512515620110614385790

63321292336461230 

From the illustration above we can notice that there is a correlation between the company's size and the 

Data Science team's size. Smaller companies have mostly Data Science Teams of 1-2 individuals while the 

larger ones have a much bigger team of 20+ members meaning that each member will have concrete 

responsibilities and tasks. 

What education do AI specialists need? 

Education requirements for data science and machine learning professionals vary by position, employer, 

and industry. Some data science professionals hold a mix of education levels. For example, someone might 

earn a bachelor's in computer science and complete a data science bootcamp. Or, they might complete a 

bachelor's in an unrelated field and then earn a master's in data science. 

Let's have a look at the highest level of education that the professionals of the Kaggle Survey have. Almost 

half of them (43.51%) hold a Master's degree while 24.76% have a Bachelor's degree. So, from my point 

of view, the Master's degree tends to be a must-have for the market. 

unfold_lessHide code 

In [47]: 

education_df = scope_df.groupby(["Q8"]).agg({"Q2" : "count"}).reset_index().rename(columns={col: 

"Q8", "Q2": "counts"}) 

 

education_df["relative_percent"] = education_df.apply(lambda x : (x["counts"] / scope_df.shape[0]), axis = 

1) 

education_df = education_df.sort_values(by=["relative_percent"], ascending=True) 

 

 

create_single_bar_plot( 



   
 

    x_values=education_df["relative_percent"].to_list(), 

    y_values=education_df["Q8"].to_list(), 

    display_text=np.round((education_df["relative_percent"] *100), decimals = 2), 

    top_n=2, 

    rest_n=education_df.shape[0]-2,  

    hovertext = education_df["counts"].to_list(), 

    title="Educational Qualifications", 

    subtitle="",  

    orientation="h" 

) 

 

2.5% 3.4% 3.74% 5.85% 16.24% 24.76% 43.51% 0.0%10.0%20.0%30.0%40.0%No formal education past 

high schoolProfessional doctorateSome college/university study without earning a bachelor’s degreeI 

prefer not to answerDoctoral degreeBachelor’s degreeMaster’s degree 

Educational Qualifications 

unfold_lessHide code 

In [48]: 

education_roles = scope_df[ 

    (scope_df["Q8"] != "I prefer not to answer") & 

    (scope_df["Q23"] != "Other") 

] 

 

education_roles['Education_level'] = education_roles.apply(lambda row: 

categorize_education(row["Q8"]), axis=1) 



   
 

education_roles = education_roles.groupby(["Education_level", "Q23"]).agg({"Q2" : 

"count"}).reset_index().rename(columns={"Q2": "counts"}) 

 

 

role_choices = list(education_roles["Q23"].unique()) 

education_choices = [ 

    "Lower than Bachelor", 

    "Bachelor", 

    "Master", 

    "Higher than Master" 

] 

x = [] 

for education_level in education_choices: 

    x.extend([education_level] * len(role_choices)) 

 

marker_size = [] 

text_markers = [] 

for education in education_choices: 

    for con in role_choices: 

        try: 

            per = (education_roles[ 

                (education_roles["Q23"] == con) & 

                (education_roles["Education_level"] == education) 

            ].iloc[0]["counts"] / education_roles[education_roles["Q23"] == con]["counts"].sum()) *100 

            marker_size.append(per) 



   
 

            text_markers.append(str(round(per, 1))+"%") 

        except IndexError as e: 

            marker_size.append(0) 

         

roles = [] 

for role in role_choices: 

    roles.append(role.split("(")[0]) 

     

trace = go.Scatter( 

    x = x,  

    y = roles*4,  

    mode='markers+text',  

    textposition="middle right",  

    text=text_markers,  

    name="",  

    

marker=dict(color=["#325C6E"]*len(role_choices)+["#a43725"]*len(role_choices)+["#edc860"]*len(role

_choices)+["#E6b6a4"]*len(role_choices), opacity=0.8, size = marker_size)) 

 

 

large_title_format = "<span style='font-size:30px; font-family:Times New Roman'>Should you pursue an 

associate degree in data science?</span>" 

small_title_format = "<span style='font-size:14px; font-family:Helvetica'>Education Level count by group 

and role</b></span>" 

 

 



   
 

 

     

layout = go.Layout(barmode='stack', margin=dict(l=200), height=1000, title = large_title_format + "<br>" 

+ small_title_format,  font = dict(color = '#7b6b59'), 

                       legend = dict(orientation="h", x=0.1, y=1.15), plot_bgcolor='#fff', paper_bgcolor='#fff',  

                       showlegend=False) 

 

fig = go.Figure(data=[trace], layout=layout) 

iplot(fig) 

 

12.7%7.9%6.7%10.8%4.1%20.8%10.6%5.0%7.3%2.3%7.7%4.4%3.8%38.1%35.7%33.7%35.1%21.9%35

.8%33.6%26.5%21.6%8.1%41.2%15.9%3.8%44.4%49.0%48.3%47.5%53.2%30.2%45.1%54.1%56.9%26

.8%42.3%54.0%28.5%4.8%7.5%11.2%6.6%20.8%13.2%10.8%14.4%14.3%62.8%8.8%25.7%63.8%Low

er than BachelorBachelorMasterHigher than MasterData AdministratorData Analyst Data ArchitectData 

EngineerData ScientistDeveloper AdvocateEngineer Machine Learning/ MLops EngineerManager 

Research ScientistSoftware EngineerStatisticianTeacher / professor 

Should you pursue an associate degree in data science?Education Level count by group and role 

Data scientists typically need at least a bachelor's degree in computer science, data science, or a related 

field. However, many employers in this field prefer a master's degree in data science or a related discipline. 

Data analysts and data engineers usually need a bachelor's degree. Becoming a data scientist or computer 

and information research scientist usually requires a master's. 

unfold_lessHide code 

In [49]: 

education_countries = pd.merge(scope_df.rename(columns={"Q4": "country"}), countries_df, 

on=["country"], how="left") 

 



   
 

 

education_countries["continent"] = education_countries.apply(lambda x : 

fix_map_country_continent(map_country_continent, x["country"], x["continent"]), axis = 1) 

education_countries = education_countries[ 

    (education_countries["continent"].notnull())& 

    (education_countries["Q8"] != "I prefer not to answer") 

] 

 

education_countries['Education_level'] = education_countries.apply(lambda row: 

categorize_education(row["Q8"]), axis=1) 

 

education_countries = education_countries.groupby(["Education_level", "continent"]).agg({"Q2" : 

"count"}).reset_index().rename(columns={"Q2": "counts"}) 

 

 

continent_choices = list(education_countries["continent"].unique()) 

education_choices = [ 

    "Lower than Bachelor", 

    "Bachelor", 

    "Master", 

    "Higher than Master" 

] 

x = [] 

for education_level in education_choices: 

    x.extend([education_level] * len(continent_choices)) 

 



   
 

marker_size = [] 

text_markers = [] 

for education in education_choices: 

    for con in continent_choices: 

        try: 

            per = (education_countries[ 

                (education_countries["continent"] == con) & 

                (education_countries["Education_level"] == education) 

            ].iloc[0]["counts"] / education_countries[education_countries["continent"] == 

con]["counts"].sum()) *100 

            marker_size.append(per) 

            text_markers.append(str(round(per, 1))+"%") 

        except IndexError as e: 

            marker_size.append(0) 

         

trace = go.Scatter( 

    x = x,  

    y = continent_choices*4,  

    mode='markers+text',  

    textposition="middle right",  

    text=text_markers,  

    name="",  

    

marker=dict(color=["#325C6E"]*len(continent_choices)+["#a43725"]*len(continent_choices)+["#edc860"

]*len(continent_choices)+["#E6b6a4"]*len(continent_choices), opacity=0.8, size = marker_size)) 

 



   
 

 

large_title_format = "<span style='font-size:30px; font-family:Times New Roman'>Education 

Level</span>" 

small_title_format = "<span style='font-size:14px; font-family:Helvetica'>count by group and 

continent</b></span>" 

 

 

 

     

layout = go.Layout(barmode='stack', margin=dict(l=200), height=600, title = large_title_format + "<br>" + 

small_title_format, font = dict(color = '#7b6b59'), 

                       legend = dict(orientation="h", x=0.1, y=1.15), plot_bgcolor='#fff', paper_bgcolor='#fff',  

                       showlegend=False) 

 

fig = go.Figure(data=[trace], layout=layout) 

iplot(fig) 

 

6.6%8.2%5.2%7.4%6.1%35.1%23.9%31.8%12.7%28.8%43.2%44.9%45.8%50.9%40.9%15.1%23.0%17.

3%29.1%24.2%Lower than BachelorBachelorMasterHigher than 

MasterAfricaAmericasAsiaEuropeOceania 

Education Levelcount by group and continent 

Artificial Intelligence salaries (by role, industry, education & 

more) 

I hope the last part of the analysis to help you in your salary negotiations or when negotiating a job offer :P 



   
 

So, the $100 Dollar Question: How Much Do Artificial Intelligence (AI) and Data Jobs Actually Pay? 

Well, the exact numbers of AI salaries depend on many factors, including specific job responsibilities, 

industry, experience, education level, and geographic location. 

Therefore, for the salary benchmarking I'll get each factor separately and do a salary comparison based on 

that. We would get more representative insights if I would take into account all of them at once, or jointly, 

for instance examine salaries based on industry and job roles, or based on country, industry, and job roles. 

However, I want to keep the analysis simple so let's do the deep dives by exploring each factor separately. 

Starting with the analysis of the yearly compensation by job role, it is clear that the 1st best-paying salary 

is for Data Architects (median at 65,000 US dollars per year), followed by Managers (median at 

55,000 US dollars per year) and Data Scientists, earning slightly less (median at 45,000 US dollars per 

year) while Statisticians are paid less than any other profession. 

Disclaimer: The exact numbers of the salaries might be not fully accurate because we have to take into 

consideration all the factors mentioned at the beginning of the section for the salary benchmarking instead 

of examining them one by one. But we can get an overview of the market trends in 2022. 

unfold_lessHide code 

In [50]: 

scope_df[['min_w','max_w']]=scope_df['Q29'].str.replace('$', '', regex=False).str.replace(',', '', 

regex=False).str.replace('>', '', regex=False).str.split('-', expand = True) 

scope_df[['min_w','max_w']] = scope_df[['min_w','max_w']].astype('float') 

scope_df['Mean_Compensation']=(scope_df['min_w']+scope_df['max_w'])/2 + 0.5 

 

scope_df["Q23"] = scope_df["Q23"].apply(lambda x : x.split("(")[0]).to_list() 

 

create_box_plot(scope_df,"Q23", "Mean_Compensation",  "Yearly compensation by profession") 

 



   
 

Data ScientistSoftware EngineerResearch ScientistOtherDeveloper AdvocateData Analyst Data 

EngineerMachine Learning/ MLops EngineerEngineer Teacher / professorStatisticianManager Data 

AdministratorData Architect0100k200k300k400k500k600k700k 

Yearly compensation by professionCompensation in USD 

Moving on to the comparison by industry in the first place as it can be seen in the chart are the Medical / 

Pharmaceutical and Insurance companies, offering 45,000 US dollars yearly compensation on average. 

Even if the numbers are not accurate, the trends though look reasonable. The Pharmaceutical and Health 

Sciences sector played a key role during the COVID-19 pandemic. To deal with the global crisis, 

traditional competitors teamed up to accelerate research, and this “new normal” mindset triggered 

organizations to rethink their operational models. 

unfold_lessHide code 

In [51]: 

create_box_plot(scope_df,"Q24", "Mean_Compensation",  "Yearly compensation by industry") 

 

Online Service/Internet-based ServicesInsurance/Risk AssessmentGovernment/Public 

ServiceManufacturing/FabricationComputers/TechnologyAccounting/FinanceAcademics/EducationNon-

profit/ServiceOtherMedical/PharmaceuticalMarketing/CRMEnergy/MiningBroadcasting/Communications

Retail/SalesShipping/Transportation0100k200k300k400k500k600k700k 

Yearly compensation by industryCompensation in USD 

As you might expect there's a clear correlation between education level and salary. Generally, it 

seems that the more educated you are, the greater your salary becomes. 

The same applies to years of coding experience or ML experience. 

unfold_lessHide code 

In [52]: 



   
 

scope_df['Education_level'] = scope_df.apply(lambda row: categorize_education(row["Q8"]), axis=1) 

 

map_education = { 

    "Lower than Bachelor": "1. Lower than Bachelor" ,  

    "Bachelor": "2. Bachelor", 

    "Master": "3. Master", 

    "Higher than Master": "4. Higher than Master", 

    "Other": "Other" 

         

} 

 

results = scope_df 

results["Education_level"] = results["Education_level"].apply(lambda x : map_education[x]) 

results = results.sort_values(by=["Education_level"]) 

results["Education_level"] = results["Education_level"].apply(lambda x : x.split(".")[-1].strip()).to_list() 

results = results[results["Education_level"] != "Other"] 

 

create_box_plot(results,"Education_level", "Mean_Compensation",  "Yearly compensation by education 

level") 
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Yearly compensation by education levelCompensation in USD 

unfold_lessHide code 



   
 

In [53]: 

tmp = scope_df.sort_values(by=["Q11"]) 

tmp = tmp[tmp["Q11"].notnull()] 

tmp["Q11"] = tmp["Q11"].apply(lambda x : x.split(".")[-1]) 

 

create_box_plot(tmp, "Q11", "Mean_Compensation",  "Yearly compensation by years of coding 

experience") 

 

tmp = scope_df.sort_values(by=["Q16"]) 

tmp = tmp[tmp["Q16"].notnull()] 

tmp["Q16"] = tmp["Q16"].apply(lambda x : x.split(".")[-1]) 

 

create_box_plot(tmp, "Q16", "Mean_Compensation",  "Yearly compensation by years of ML experience") 
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0 years < 1 years 1-2 years 2-3 years 3-4 years 4-5 years 5-10 years 10-20 

years0100k200k300k400k500k600k700k 

Yearly compensation by years of ML experienceCompensation in USD 

In terms of continent, it seems that the Americas and Oceania pay higher salaries for AI jobs compared 

to Europe, Asia, and Africa. 

unfold_lessHide code 

In [54]: 



   
 

education_countries = pd.merge(scope_df.rename(columns={"Q4": "country"}), countries_df, 

on=["country"], how="left") 

 

education_countries["continent"] = education_countries.apply(lambda x : 

fix_map_country_continent(map_country_continent, x["country"], x["continent"]), axis = 1) 

 

create_box_plot(education_countries, "continent", "Mean_Compensation",  "Yearly compensation by 

continent") 
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Yearly compensation by continentCompensation in USD 

Another clear trend is that large companies pay higher wages. One explanation could be that workers 

in big firms are more skilled. 

unfold_lessHide code 

In [55]: 

tmp = scope_df.sort_values(by=["Q25"]) 

tmp = tmp[tmp["Q25"].notnull()] 

tmp["Q25"] = tmp["Q25"].apply(lambda x : x.split(".")[-1]) 

 

create_box_plot(tmp, "Q25", "Mean_Compensation",  "Yearly compensation by company size") 
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Conclusion 

All in all, my goal through this analysis was to provide insights about the state of AI adoption & MLOps in 

Industry, by examing to what extent enterprises have Machine Learning models in production, what are the 

main tools that they use for Data Storage, Model training, deployment, and other processes, what are the 

main frameworks and libraries used on a regular basis as well as what are the most common AI job roles 

that the companies seek. 

Key Takeaways 

● 21.7% of the professionals in the survey said that their companies haven't started yet to explore 

Machine Learning methods vs 32.8% of the respondents who stated that their organizations 

have already Machine Learning models in production either in advanced or in an intermediate 

stage. 

● Online / Internet-based Services, insurances, and tech companies are the leaders in the adoption 

of Artificial Intelligence. 

● Even if smaller companies might be better candidates for the implementation of AI, due to the 

absence of legacy systems, the survey results show that big companies are leading at the moment 

the way in AI adoption. 

● 45% of the professional that participated in the survey use Cloud Computing Platforms with 

Amazon Web Services (AWS) and Google Cloud Platform (GCP) being the dominant ones in 

2022. 

● The most popular AI jobs are Data Scientist and Data Analyst. 

● Top Skills Required for a Data Scientist / Machine Learning Engineer: 

■ Programming Languages: Python, SQL 

■ Machine Learning Frameworks: Scikit-learn, Tensorflow, Keras 

■ Machine Learning Algorithms: Linear and Logistic Regression, Decision Trees, 

Gradient Boosting Machines, CNNs, MLPs, Transformers 

■ Experience using Cloud Computing Platforms 

■ Data Visualization Libraries: Matplotlib, Seaborn, Plotly 

● The main responsibilities of a Data Scientist are: 

■ Analyze and understand data to influence product or business decisions 

■ Build prototypes to explore applying machine learning to new areas 

■ Experimentation and iteration to improve existing ML models 

while for a Machine Learning Engineer: 

○ Build prototypes to explore applying machine learning to new areas 

○ Experimentation and iteration to improve existing ML models 



   
 

○ Build and/or run a machine learning service that operationally improves the 

products or workflows 

● 43.51% of the professionals hold a Master's degree 

● Transfer Learning methods used mainly in Computer Vision Tasks 

● Only 31.3% of the respondents use specialized hardware when training machine learning 

models which indicates either that usually we don't deal with big data or deep neural networks that 

require huge resources for training or that the companies don't invest in specialized hardware and 

this causes a bottleneck to the productionization of ML models. 
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